AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel oscillator based on heterogeneous carbon@MoS2 nanotubes

Wugui Jiang1( )Yonghui Zeng1Qinghua Qin2( )Qianghui Luo1
School of Aeronautical Manufacturing EngineeringNanchang Hangkong UniversityNanchang330063China
Research School of Engineeringthe Australian National UniversityActon ACT2601Australia
Show Author Information

Graphical Abstract

Abstract

Oscillatory behavior of novel heterogeneous oscillators composed of carbon and molybdenum disulfide nanotubes (CNT@MST) was investigated for the first time, by using the methods of classical molecular dynamics. In the proposed oscillators, a molybdenum disulfide nanotube (MST) was set as an outer tube, leading to better compatibility with the semiconductor industry standards. A smooth and stable oscillator with a frequency reaching 20 GHz was obtained based on a double-walled CNT@MST hetero-nanotube for a wide range of gap widths, indicating that the proposed oscillators perform much better than those built from double-walled carbon nanotubes (CNTs) that require a narrow range of gap widths. In addition, the oscillation characteristics of CNT@MST oscillators containing different inner and outer tube chirality were significantly better than those of CNT@MST oscillators containing two tubes with the same chirality.

References

1

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

2

Janas, D.; Koziol, K. K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale 2014, 6, 3037–3045.

3

Qin, Z.; Zou, J.; Feng, X. Q. Influence of water on the frequency of carbon nanotube oscillators. J. Comput. Theor. Nanos. 2008, 5, 1403–1407.

4

Shen, C.; Brozena, A. H.; Wang, Y. H. Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale 2011, 3, 503–518.

5

Lee, S. W.; Campbell, E. E. B. Nanoelectromechanical devices with carbon nanotubes. Curr. Appl. Phys. 2013, 13, 1844–1859.

6

Rasekh, M.; Khadem, S. E.; Toghraee, A. NEMS thermal switch operating based on thermal expansion of carbon nanotubes. Phys. E: Low Dimens. Syst. Nanostr. 2014, 59, 210–217.

7

Remškar, M.; Viršek, M.; Mrzel, A. The MoS2 nanotube hybrids. Appl. Phys. Lett. 2009, 95, 133122.

8

Ferrari, A. C.; Bonaccorso, F.; Fal'Ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.

9

Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T. Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 2000, 85, 146–149.

10

Song, I.; Park, C.; Choi, H. C. Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv. 2015, 5, 7495–7514.

11

Zhuiykov, S.; Kats, E. Atomically thin two-dimensional materials for functional electrodes of electrochemical devices. Ionics 2013, 19, 825–865.

12

Dallavalle, M.; Sändig, N.; Zerbetto, F. Stability, dynamics, and lubrication of MoS2 platelets and nanotubes. Langmuir 2012, 28, 7393–7400.

13

Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.

14

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

15

Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

16

Ma, L.; Chen, W. X.; Xu, Z. D.; Xia, J. B.; Li, X. Carbon nanotubes coated with tubular MoS2 layers prepared by hydrothermal reaction. Nanotechnology 2006, 17, 571–574.

17

Song, X. C.; Zheng, Y. F.; Zhao, Y.; Yin, H. Y. Hydrothermal synthesis and characterization of CNT@MoS2 nanotubes. Mater. Lett. 2006, 60, 2346–2348.

18

Zhang, X. F.; Luster, B.; Church, A.; Muratore, C.; Voevodin, A. A.; Kohli, P.; Aouadi, S.; Talapatra, S. Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. inter. 2009, 1, 735–739.

19

Wang, J. Z.; Lu, L.; Lotya, M.; Coleman, J. N.; Chou, S. L.; Liu, H. K.; Minett, A. I.; Chen, J. Development of MoS2–CNT composite thin film from layered MoS2 for lithium batteries. Adv. Energy Mater. 2013, 3, 798–805.

20

Yuan, H. Y.; Li, J. Y.; Yuan, C.; He, Z. Facile synthesis of MoS2@CNT as an effective catalyst for hydrogen production in microbial electrolysis cells. ChemElectroChem 2014, 1, 1828–1833.

21

Maharaj, D.; Bhushan, B. Characterization of nanofriction of MoS2 and WS2 nanotubes. Mater. Lett. 2015, 142, 207–210.

22

Li, N. N.; Lee, G.; Jeong, Y. H.; Kim, K. S. Tailoring electronic and magnetic properties of MoS2 nanotubes. J. Phys. Chem. C 2015, 119, 6405–6413.

23

Maharaj, D.; Bhushan, B. Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and carbon nanohorns. Sci. Rep. 2015, 5, 8539.

24

Lorenz, T.; Teich, D.; Joswig, J. O.; Seifert, G. Theoretical study of the mechanical behavior of individual TiS2 and MoS2 nanotubes. J. Phys. Chem. C 2012, 116, 11714–11721.

25

Kis, A.; Mihailovic, D.; Remskar, M.; Mrzel, A.; Jesih, A.; Piwonski, I.; Kulik, A. J.; Benoît, W.; Forró, L. Shear and Young's moduli of MoS2 nanotube ropes. Adv. Mater. 2003, 15, 733–736.

26

Li, W. F.; Zhang, G.; Guo, M.; Zhang, Y. W. Strain-tunable electronic and transport properties of MoS2 nanotubes. Nano Res. 2014, 7, 518–524.

27

Xiao, J.; Long, M. Q.; Li, X. M.; Xu, H.; Huang, H.; Gao, Y. L. Theoretical prediction of electronic structure and carrier mobility in single-walled MoS2 nanotubes. Sci. Rep. 2014, 4, 4327.

28

Enyashin, A. N.; Ivanovskii, A. L. Modeling of the capillary filling of MoS2 nanotubes with titanium tetrachloride molecules. Theor. Exp. Chem. 2010, 46, 203–207.

29

Enyashin, A. N.; Seifert, G. Molecular-dynamics simulations of capillary imbibition of KI melt into MoS2 nanotubes. Chem. Phys. Lett. 2010, 501, 98–102.

30

Bucholz, E. W.; Sinnott, S. B. Mechanical behavior of MoS2 nanotubes under compression, tension, and torsion from molecular dynamics simulations. J. Appl. Phys. 2012, 112, 123510.

31

Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. -Condens. Mat. 2002, 14, 783–802.

32

Stillinger, F. H.; Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 1985, 31, 5262–5271.

33

Jiang, J. W. Parametrization of Stillinger-Weber potential based on valence force field model: Application to single-layer MoS2 and black phosphorus. Nanotechnology 2015, 26, 315706.

34

Jiang, J. W.; Park, H. S.; Rabczuk, T. Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 2013, 114, 064307.

35

Jiang, J. W.; Park, H. S.; Rabczuk, T. MoS2 nanoresonators: Intrinsically better than graphene? Nanoscale 2014, 6, 3618–3625.

36

Zou, J.; Ji, B. H.; Feng, X. Q.; Gao, H. J. Molecular-dynamic studies of carbon–water–carbon composite nanotubes. Small 2006, 2, 1348–1355.

37

Liu, P.; Zhang, Y. W.; Lu, C. Analysis of the oscillatory behavior of double-walled carbon nanotube-based oscillators. Carbon 2006, 44, 27–36.

38

Jiang, J. W.; Park, H. S. Mechanical properties of MoS2/graphene heterostructures. Appl. Phys. Lett. 2014, 105, 033108.

39

Tomar, D. S.; Singla, M.; Gumma, S. Potential parameters for helium adsorption in silicalite. Micropor. Mesopor. Mat. 2011, 142, 116–121.

40

Rouha, M.; Moučka, F.; Nezbeda, I. The Effect of cross interactions on mixing properties: Non-Lorentz-Berthelot Lennard-Jones mixtures. Collect. Czech. Chem. C. 2008, 73, 533–540.

41

Rouha, M.; Nezbeda, I. Non-Lorentz-Berthelot Lennard-Jones mixtures: A systematic study. Fluid Phase Equilibr. 2009, 277, 42–48.

42

Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486.

43

Kang, J. W.; Kim, K. S.; Hwang, H. J.; Kwon, O. K. Molecular dynamics study of effects of intertube gap on frequency-controlled carbon-nanotube oscillators. Phys. Lett. A. 2010, 374, 3658–3665.

44

Voter, A. F.; Doll, J. D. Transition state theory description of surface self-diffusion: Comparison with classical trajectory results. J. Chem. Phys. 1984, 80, 5832–5838.

45

Doll, J. D.; McDowell, H. K. Theoretical studies of surface diffusion: Self-diffusion in the fcc (111) system. J. Chem. Phys. 1982, 77, 479–483.

46

Miwa, R. H.; Scopel, W. L. Lithium incorporation at the MoS2/graphene interface: An ab initio investigation. J. Phys. -Condens. Matter. 2013, 25, 445301.

47

Servantie, J.; Gaspard, P. Rotational dynamics and friction in double-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97, 186106.

48

Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604.

49

Zheng, Q. S.; Jiang, Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 2002, 88, 045503.

50

Zhao, Y.; Ma, C. C.; Chen, G. H.; Jiang, Q. Energy dissipation mechanisms in carbon nanotube oscillators. Phys. Rev. Lett. 2003, 91, 175504.

51

Guo, W. L.; Guo, Y. F.; Gao, H. J.; Zheng, Q. S.; Zhong, W. Y. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 125501.

52

Belikov, A. V.; Lozovik, Y. E.; Nikolaev, A. G.; Popov, A. M. Double-wall nanotubes: Classification and barriers to walls relative rotation, sliding and screwlike motion. Chem. Phys. Lett. 2004, 385, 72–78.

53

Rivera, J. L.; McCabe, C.; Cummings, P. T. The oscillatory damped behaviour of incommensurate double-walled carbon nanotubes. Nanotechnology 2005, 16, 186–198.

54

Legoas, S. B.; Coluci, V. R.; Braga, S. F.; Coura, P. Z.; Dantas, S. O.; Galvão, D. S. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 2003, 90, 055504.

Nano Research
Pages 1775-1784
Cite this article:
Jiang W, Zeng Y, Qin Q, et al. A novel oscillator based on heterogeneous carbon@MoS2 nanotubes. Nano Research, 2016, 9(6): 1775-1784. https://doi.org/10.1007/s12274-016-1070-5

685

Views

16

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 07 January 2016
Revised: 27 February 2016
Accepted: 14 March 2016
Published: 13 April 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return