AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The origins of the broadband photoluminescence from carbon nitrides and applications to white light emitting

Zhixing Gan1,2( )Yun Shan2,3Jiarui Chen2Qingfeng Gui2Qizhen Zhang2Shouping Nie1Xinglong Wu2( )
Key Laboratory of Optoelectronic Technology of Jiangsu ProvinceSchool of Physical Science and Technology, Nanjing Normal UniversityNanjing210023China
Key Laboratory of Modern Acoustics, MOE, Institute of AcousticsCollaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing UniversityNanjing210093China
School of Environmental ScienceNanjing Xiaozhuang UniversityNanjing211171China
Show Author Information

Graphical Abstract

Abstract

Carbon nitrides synthesized by thermal polycondensation of melamine at 700 ℃ exhibit photoluminescence (PL) ranging from 400 to 650 nm. This broad PL is attributed to band to band transitions and bandtail transitions of lone pair (LP) states of intra-tri-s-triazine and inter-tri-s-triazine nitrogens. The proposed PL mechanism is further confirmed by diffusion reflectance spectroscopy, as well as time-resolved and temperature-dependent PL. This intense fluorescence is stable at different pH and resistant to UV exposure, suggesting that this inexpensive broadband luminescent material could be significant for whitelight-emitting (WLE) applications. Thus, quasi-WLE films and membranes with designed patterns are fabricated by embedding the carbon nitrides into polymethyl methacrylate. Moreover, even broader PL (400 to 740 nm) is acquired in composite films composed of carbon nitrides, further suggesting that the carbon nitrides are robust candidates for WLE.

Electronic Supplementary Material

Download File(s)
nr-9-6-1801_ESM.pdf (2.8 MB)

References

1

Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238.

2

Waltereit, P.; Brandt, O.; Trampert, A.; Grahn, H. T.; Menniger, J.; Ramsteiner, M.; Reiche, M.; Ploog, K. H. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865–868.

3

Kang, F. W.; Peng, M. Y.; Zhang, Q. Y.; Qiu, J. R. Abnormal anti-quenching and controllable multi-transitions of Bi3+ luminescence by temperature in a yellow-emitting LuVO4: Bi3+ phosphor for UV-converted white LEDs. Chem. —Eur. J. 2014, 20, 11522–11530.

4

Nakamura, S. Blue-green light-emitting diodes and violet laser diodes. MRS Bull. 1997, 22, 29–35.

5

Teter, D. M.; Hemley, R. J. Low-compressibility carbon nitrides. Science 1996, 271, 53-55.

6

Zhao, Z. W.; Sun, Y. J.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15-37.

7

Cao, S. W.; Yu, J. G. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101-2107.

8

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

9

Takanabe, K.; Kamata, K.; Wang, X. C.; Antonietti, M.; Kubota, J.; Domen, K. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys. Chem. Chem. Phys. 2010, 12, 13020–13025.

10

Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171–15174.

11

Chai, B.; Peng, T. Y.; Mao, J.; Li, K.; Zan, L. Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys. Chem. Chem. Phys. 2012, 14, 16745–16752.

12

Liu, J. H.; Zhang, Y. W.; Lu, L. H.; Wu, G.; Chen, W. Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem. Commun. 2012, 48, 8826–8828.

13

Zhang, Y. W.; Liu, J. H.; Wu, G.; Chen, W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 2012, 4, 5300–5303.

14

Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 2012, 22, 15006–15012.

15

Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 2010, 26, 3894–3901.

16

Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401.

17

Wang, Y. J.; Wang, Z. X.; Muhammad, S.; He, J. Graphite-like C3N4 hybridized ZnWO4 nanorods: Synthesis and its enhanced photocatalysis in visible light. CrystEngComm 2012, 14, 5065–5070.

18

Zhang, G. G.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091.

19

Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.

20

Sano, T. Z.; Tsutsui, S.; Koike, K.; Hirakawa, T.; Teramoto, Y.; Negishi, N.; Takeuchi, K. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem. A 2013, 1, 6489–6496.

21

Wang, Y. J.; Shi, R.; Lin, J.; Zhu, Y. F. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 2011, 4, 2922–2929.

22

Liao, G. Z.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M.; Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 2012, 22, 2721–2726.

23

Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.

24

Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115, 7355–7363.

25

Niu, P; Yang, Y. Q.; Yu, J. C.; Liu, G.; Cheng, H. M., Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a g-C3N4 photocatalyst. Chem. Commun. 2014, 50, 10837–10840.

26

Iwano, Y.; Kittaka, T.; Tabuchi, H.; Soukawa, M.; Kunitsugu, S.; Takarabe, K.; Itoh, K. Study of amorphous carbon nitride films aiming at white light emitting devices. Jpn. J. Appl. Phys. 2008, 47, 7842–7844.

27

Papadimitriou, D.; Roupakas, G.; Dimitriadis, C. A.; Logothetidis, S. Raman scattering and photoluminescence of nitrogenated amorphous carbon films. J. Appl. Phys. 2002, 92, 870–875.

28

Chen, L. C.; Huang, D. J.; Ren, S. Y.; Dong, T. Q.; Chi, Y. W.; Chen, G. N. Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 2013, 5, 225–230.

29

Zhang, Y. H.; Pan, Q. W.; Chai, G. Q.; Liang, M. R.; Dong, G. P.; Zhang, Q. Y.; Qiu, J. R. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1943.

30

Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 2014, 26, 4438–4443.

31

Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18-21.

32

Yuan, Y. W.; Zhang, L. L.; Xing, J.; Utama, M. I. B.; Lu, X.; Du, K. Z.; Li, Y. M.; Hu, X.; Wang, S. J.; Genç, A. et al. High-yield synthesis and optical properties of g-C3N4. Nanoscale 2015, 7, 12343–12350.

33

Schmitt, J. M. Optical coherence tomography (OCT): A review. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1205–1215.

34

Wang, J. X.; Huang, J.; Xie, H. L.; Qu, A. L. Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method. Int. J. Hydrogen Energ. 2014, 39, 6354–6363.

35

Li, X. F.; Zhang, J.; Shen, L. H.; Ma, Y. M.; Lei, W. W.; Cui, Q. L.; Zou, G. T. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl. Phys. A 2009, 94, 387–392.

36

Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Courjault, S. C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form. J. Mater. Sci. 2000, 35, 2547–2552.

37

Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlöglb, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908.

38

Gan, Z. X.; Wu, X. L.; Hao, Y. L. The mechanism of blue photoluminescence from carbon nanodots. CrystEngComm 2014, 16, 4981–4986.

39

Gan, Z. X.; Xiong, S. J.; Wu, X. L.; Xu, T.; Zhu, X. B.; Gan, X.; Guo, J. H.; Shen, J. C.; Sun, L. T.; Chu, P. K. Mechanism of photoluminescence from chemically derived graphene oxide: Role of chemical reduction. Adv. Opt. Mater. 2013, 1, 926–932.

Nano Research
Pages 1801-1812
Cite this article:
Gan Z, Shan Y, Chen J, et al. The origins of the broadband photoluminescence from carbon nitrides and applications to white light emitting. Nano Research, 2016, 9(6): 1801-1812. https://doi.org/10.1007/s12274-016-1073-2

793

Views

71

Crossref

N/A

Web of Science

71

Scopus

0

CSCD

Altmetrics

Received: 30 November 2015
Revised: 13 March 2016
Accepted: 15 March 2016
Published: 18 April 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return