AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures

Hualiang Lv1,3Haiqian Zhang1Jun Zhao2Guangbin Ji1( )Youwei Du4
College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211100China
School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
School of Materials Sciences and EngineeringNanyang Technological University, 50 Nanyang AvenueSingapore639798Singapore
National Laboratory of Solid State MicrostructuresNanjing UniversityNanjing210093China
Show Author Information

Graphical Abstract

Abstract

A symmetrical Fe2O3/BaCO3 hexagonal cone structure having a height of 10 μm and an edge length of ~4 μm is reported, obtained using a common solvothermal process and a mirror growth process. Focused ion beam and high-resolution transmission electron microscopy techniques revealed that α-Fe2O3 was the single crystal feature present. Ba ions contributed to the formation of symmetrical structures exhibited in the final composites. Subsequently, porous magnetic symmetric hexagonal cone structures were used to study the observed intense electromagnetic wave interference. Electromagnetic absorption performance studies at 2–18 GHz indicated stronger attenuation electromagnetic wave ability as compared to other shapes such as spindles, spheres, cubes, and rods. The maximum absorption frequency bandwidth was at 7.2 GHz with a coating thickness d = 1.5 mm. Special structures and the absence of BaCO3 likely played a vital role in the excellent electromagnetic absorption properties described in this research.

Electronic Supplementary Material

Download File(s)
nr-9-6-1813_ESM.pdf (1.1 MB)

References

1

Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

2

Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.

3

Chen, Y. M.; Li, Z.; Lou, X. W. D. General formation of MxCo3-xS4 (M = Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 10521–10524.

4

Guo, W. X.; Sun, W. W.; Wang, Y. Multilayer CuO@NiO hollow spheres: Microwave-assisted metalorganic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 2015, 9, 11462–11471.

5

Park, S. H.; Kim, H. K.; Yoon, B. S.; Lee, C. W.; Ahn, D.; Lee, S. I.; Roh, K. C.; Kim, K. B. Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 2015, 27, 457–465.

6

Liu, Y. J.; Xin, F. X.; Zhu, E. B.; Chen, L.; Huang, Y.; Chen, C. F. PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Res. 2015, 8, 3342–3352.

7

Wu, W.; Hao, R.; Liu, F.; Su, X. T.; Hou, Y. L. Single-crystalline α-Fe2O3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light. J. Mater. Chem. A 2013, 1, 6888–6894.

8

Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. D. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

9

Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

10

Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736–1743.

11

He, S.; Wang, G. S.; Lu, C.; Luo, X.; Wen, B.; Guo, L.; Cao, M. S. Controllable fabrication of CuS hierarchical nanostructures and their optical, photocatalytic, and wave absorption properties. ChemPlusChem 2013, 78, 250–258.

12

Ma, R. G.; Wang, M.; Dam, D. T.; Dong, Y. C.; Chen, Y.; Moon, S. K.; Yoon, Y. J.; Lee, J. M. Halide-ion-assisted synthesis of different α-Fe2O3 hollow structures and their lithium-ion storage properties. ChemPlusChem 2015, 80, 522–528.

13

Zhang, J. N.; Wang, K. X.; Xu, Q.; Zhou, Y. C.; Cheng, F. Y.; Gu, S. J. Beyond yolk–shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 2015, 9, 3369–3376.

14

Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734–15740.

15

Lv, H. L.; Ji, G. B.; Wang, M.; Shang, C. M.; Zhang, H. Q.; Du, Y. W. FeCo/ZnO composites with enhancing microwave absorbing properties: Effect of hydrothermal temperature and time. RSC Adv. 2014, 4, 57529–57533.

16

Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744-4750.

17

Qiu, J.; Qiu, T. T. Fabrication and microwave absorption properties of magnetite nanoparticle–carbon nanotube–hollow carbon fiber composites. Carbon 2015, 81, 20–28.

18

Chen, Y.; Wang, Y. L.; Zhang, H. B.; Li, X. F.; Gui, C. X.; Yu, Z. Z. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 2015, 82, 67–76.

19

Najim, M.; Modi, G.; Mishra, Y. K.; Adelung, R.; Singh, D.; Agarwala, V. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni–P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 2015, 17, 22923–22933.

20

Zhao, B.; Fan, B. B.; Xu, Y. W.; Shao, G.; Wang, X. D.; Zhao, W. Y.; Zhang, R. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features. ACS Appl. Mater. Interfaces 2015, 7, 26217–26225.

21

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

22

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

23

Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

24

Shang, C. M.; Ji, G. B.; Liu, W.; Zhang, X. M., Lv, H. L.; Du, Y. W. One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application. RSC Adv. 2015, 5, 80450–80456.

25

Yong, Y.; Yang, Y.; Wen, X.; Jun, D. Microwave electromagnetic and absorption properties of magnetite hollow nanostructures. J. Appl. Phys. 2014, 115, 17A521.

26

Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

27

Lv, H. L.; Ji, G. B.; Liu, W.; Zhang, H. Q.; Du, Y. W. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 2015, 3, 10232–10241.

28

Fu, L. S.; Jiang, J. T.; Xu, C. Y.; Zhen, L. Synthesis of hexagonal Fe microflakes with excellent microwave absorption performance. CrystEngComm 2012, 14, 6827–6832.

29

Lv, H. L.; Ji, G. B.; Liang, X. H.; Zhang, H. Q.; Du, Y. W. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 2015, 3, 5056–5064.

30

Lv, H. L.; Ji, G. B.; Zhang, H. Q.; Li, M.; Zuo, Z. Z.; Zhao, Y.; Zhang, B. S.; Tang, D. M.; Du, Y. W. CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci. Rep. 2015, 5, 18249.

31

Lv, H. L.; Liang, X. H.; Cheng, Y.; Ji, G. B.; Tang, D. M.; Zhang, B. S.; Zhang, H. Q.; Du, Y. W. Facile synthesis of porous coin-like iron and its excellent electromagnetic absorption performance. RSC Adv. 2015, 5, 25936–25941.

32

Qiang, R.; Du, Y. C.; Zhao, H. T.; Wang, Y.; Tian, C. H.; Li, Z. G.; Han, X. J.; Xu, P. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 2015, 3, 13426–13434.

33

Lv, H. L.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Facile synthesis of a CNT@Fe@SiO2 ternary composite with enhanced microwave absorption performance. RSC Adv. 2015, 5, 76836–76843.

34

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Chen, Y. Q.; Zhang, R. Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 2015, 5, 9806–9814.

35

Wen, S. L.; Liu, Y.; Zhao, X. C.; Cheng, J. W.; Li, H. Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 2014, 16, 18333–18340.

36

Zhang, L. L.; Yu, X. X.; Hu, H. R.; Li, Y.; Wu, M. Z.; Wang, Z. Z.; Li, G.; Sun, Z. Q.; Chen, C. L. Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep. 2015, 5, 9298.

37

Batter, B.; Wang, L.; Zhao, L.; Yu, P.; Tian, C. G.; Pan, K.; Fu, H. G. A novel Fe3C/graphitic carbon composite with electromagnetic wave absorption properties in the C-band. RSC Adv. 2015, 5, 60135–60140

Nano Research
Pages 1813-1822
Cite this article:
Lv H, Zhang H, Zhao J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Research, 2016, 9(6): 1813-1822. https://doi.org/10.1007/s12274-016-1074-1
Part of a topical collection:

919

Views

228

Crossref

N/A

Web of Science

232

Scopus

12

CSCD

Altmetrics

Received: 10 January 2016
Revised: 03 March 2016
Accepted: 16 March 2016
Published: 13 April 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return