AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ternary supramolecular quantum-dot network flocculation for selective lectin detection

Maria Oikonomou1Junyou Wang1Rui Rijo Carvalho1,2Aldrik H. Velders1,3( )
Laboratory of BioNanoTechnologyWageningenUR, Dreijenplein 6, 6703 HB, Wageningenthe Netherlands
Micronit Microfluidics B.V., Colosseum 15, 7521 PV, Enschedethe Netherlands
Interventional Molecular Imaging LaboratoryDepartment of Radiology, Leiden University Medical Center, 2333 ZA, Leidenthe Netherlands
Show Author Information

Graphical Abstract

Abstract

We present a versatile, tuneable, and selective nanoparticle-based lectin biosensor, based on flocculation of ternary supramolecular nanoparticle networks (NPN), formed through the sequential binding of three building blocks. The three building blocks are β-cyclodextrin-capped CdTe quantum dots, tetraethylene glycol-tethered mannose-adamantane cross-linkers (ADTEGMan), and the tetravalent lectin Concanavalin A (ConA). The working principle of this selective sensor lies in the dual orthogonal molecular interactions of the linker, uniting adamantane-β-cyclodextrin and mannose-lectin interaction motifs, respectively. Only when the lectin is present, sequential binding takes place, leading to in situ self-organization of the sensor through the formation of ternary supramolecular networks. Monitoring the loss of fluorescence signal of the quantum dots in solution, caused by controlled network formation and consecutive flocculation and sedimentation, leads to selective, qualitative, and quantitative lectin detection. Fluorescent sedimented networks can be observed by the naked eye or under UV illumination for a lectin concentration of up to 10-8 M. Quantitative detection is possible at 100 min with a lower detection limit of approximately 5 × 10-8 M.

Electronic Supplementary Material

Download File(s)
nr-9-7-1904_ESM.pdf (1.9 MB)

References

1

Wee, E. J. H.; Lau, H. Y.; Botella, J. R.; Trau, M. Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chem. Commun. 2015, 51, 5828–5831.

2

Valentini, P.; Pompa, P. P. Gold nanoparticles for nakedeye DNA detection: Smart designs for sensitive assays. RSC Adv. 2013, 3, 19181–19190.

3

Witten, K. G.; Rech, C.; Eckert, T.; Charrak, S.; Richtering, W.; Elling, L.; Simon, U. Glyco-DNA–gold nanoparticles: Lectin-mediated assembly and dual-stimuli response. Small 2011, 7, 1954–1960.

4

Hu, X. -L.; Jin, H. -Y.; He, X. -P.; James, T. D.; Chen, G. -R.; Long, Y. -T. Colorimetric and plasmonic detection of lectins using core–shell gold glyconanoparticles prepared by copperfree click chemistry. ACS Appl. Mater. Interfaces 2015, 7, 1874–1878.

5

Chapman, R.; Lin, Y. Y.; Burnapp, M.; Bentham, A.; Hillier, D.; Zabron, A.; Khan, S.; Tyreman, M.; Stevens, M. M. Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano 2015, 9, 2565–2573.

6

Richards, S. -J.; Fullam, E.; Besra, G. S.; Gibson, M. I. Discrimination between bacterial phenotypes using glyconanoparticles and the impact of polymer coating on detection readouts. J. Mater. Chem. B 2014, 2, 1490–1498.

7

Marín, M. J.; Rashid, A.; Rejzek, M.; Fairhurst, S. A.; Wharton, S. A.; Martin, S. R.; McCauley, J. W.; Wileman, T.; Field, R. A.; Russell, D. A. Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. Org. Biomol. Chem. 2013, 11, 7101–7107.

8

Souza, G. R.; Christianson, D. R.; Staquicini, F. I.; Ozawa, M. G.; Snyder, E. Y.; Sidman, R. L.; Miller, J. H.; Arap, W.; Pasqualini, R. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci. USA 2006, 103, 1215–1220.

9

Liu, Y.; Yin, J. -J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719–1730.

10

Verma, A.; Rotello, V. M. Surface recognition of biomacromolecules using nanoparticle receptors. Chem. Commun. 2005, 303–312.

11

Kameta, N.; Masuda, M.; Shimizu, T. Two-step naked-eye detection of lectin by hierarchical organization of soft nanotubes into liquid crystal and gel phases. Chem. Commun. 2015, 51, 6816–6819.

12

Cheng, J. J.; Sun, Y.; Zhou, L.; Zhang, K. C.; Wang, J.; Wu, Z. Y.; Pei, R. J. Phosphorylation triggered poly-nanoparticle assembly for naked-eye distinguishable T4 polynucleotide kinase detection. RSC Adv. 2014, 4, 56731–56735.

13

de la Rica, R.; Stevens, M. M. Plasmonic elisa for the detection of analytes at ultralow concentrations with the naked eye. Nat. Prot. 2013, 8, 1759–1764.

14

de la Rica, R.; Fratila, R. M.; Szarpak, A.; Huskens, J.; Velders, A. H. Multivalent nanoparticle networks as ultrasensitive enzyme sensors. Angew. Chem. 2011, 123, 5822–5825.

15

Krings, J. A.; Vonhören, B.; Tegeder, P.; Siozios, V.; Peterlechner, M.; Ravoo, B. J. Light-responsive aggregation of β-cyclodextrin covered silica nanoparticles. J. Mater. Chem. A 2014, 2, 9587–9593.

16

Stevens, M. M.; Flynn, N. T.; Wang, C.; Tirrell, D. A.; Langer, R. Coiled-coil peptide-based assembly of gold nanoparticles. Adv. Mater. 2004, 16, 915–918.

17

Samanta, A.; Ravoo, B. J. Magnetic separation of proteins by a self-assembled supramolecular ternary complex. Angew. Chem., Int. Ed. 2014, 53, 12946–12950.

18

Nalluri, S. K. M.; Voskuhl, J.; Bultema, J. B.; Boekema, E. J.; Ravoo, B. J. Light-responsive capture and release of DNA in a ternary supramolecular complex. Angew. Chem., Int. Ed. 2011, 50, 9747–9751.

19

Basuki, J. S.; Esser, L.; Duong, H. T. T.; Zhang, Q.; Wilson, P.; Whittaker, M. R.; Haddleton, D. M.; Boyer, C.; Davis, T. P. Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake. Chem. Sci. 2014, 5, 715–726.

20

Jayawardena, H. S. N.; Wang, X.; Yan, M. D. Classification of lectins by pattern recognition using glyconanoparticles. Anal. Chem. 2013, 85, 10277–10281.

21

Reynolds, M.; Marradi, M.; Imberty, A.; Penadés, S.; Pérez, S. Multivalent gold glycoclusters: High affinity molecular recognition by bacterial lectin PA-IL. Chem. —Eur. J. 2012, 18, 4264–4273.

22

Manikandan, B.; Ramar, M. Detection and characterization of natural and inducible lectins in human serum. Results Immunol. 2012, 2, 132–141.

23

Martínez-ávila, O.; Bedoya, L. M.; Marradi, M.; Clavel, C.; Alcamí, J.; Penadés, S. Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. ChemBioChem 2009, 10, 1806–1809.

24

Schofield, C. L.; Mukhopadhyay, B.; Hardy, S. M.; McDonnell, M. B.; Field, R. A.; Russell, D. A. Colorimetric detection of Ricinus communis agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 2008, 133, 626–634.

25

Yilmaz, G.; Becer, C. R. Glyconanoparticles and their interactions with lectins. Polym. Chem. 2015, 6, 5503–5514.

26

Marín, M. J.; Schofield, C. L.; Field, R. A.; Russell, D. A. Glyconanoparticles for colorimetric bioassays. Analyst 2015, 140, 59–70.

27

Chen, X.; Ramström, O.; Yan, M. D. Glyconanomaterials: Emerging applications in biomedical research. Nano Res. 2014, 7, 1381–1403.

28

Wittmann, V.; Pieters, R. J. Bridging lectin binding sites by multivalent carbohydrates. Chem. Soc. Rev. 2013, 42, 4492–4503.

29

Ahirwar, R.; Nahar, P. Screening and identification of a DNA aptamer to concanavalin A and its application in food analysis. J. Agric. Food Chem. 2015, 63, 4104–4111.

30

Shi, Z.; Chen, J.; Li, C. -Y.; An, N.; Wang, Z. -J.; Yang, S. -L.; Huang, K. -F.; Bao, J. -K. Antitumor effects of concanavalin A and sophora flavescens lectin in vitro and in vivo. Acta Pharmacol. Sinica 2014, 35, 248–256.

31

Sánchez-Pomales, G.; Morris, T. A.; Falabella, J. B.; Tarlov, M. J.; Zangmeister, R. A. A lectin-based gold nanoparticle assay for probing glycosylation of glycoproteins. Biotechnol. Bioeng. 2012, 109, 2240–2249.

32

Sato, Y.; Murakami, T.; Yoshioka, K.; Niwa, O. 12-Mercaptododecyl β-maltoside-modified gold nanoparticles: Specific ligands for concanavalin A having long flexible hydrocarbon chains. Anal. Bioanal. Chem. 2008, 391, 2527–2532.

33

Babu, P.; Sinha, S.; Surolia, A. Sugar–quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chem. 2007, 18, 146–151.

34

Earhart, C.; Jana, N. R.; Erathodiyil, N.; Ying, J. Y. Synthesis of carbohydrate-conjugated nanoparticles and quantum dots. Langmuir 2008, 24, 6215–6219.

35

Soman, C.; Giorgio, T. Kinetics of molecular recognition mediated nanoparticle self-assembly. Nano Res. 2009, 2, 78–84.

36

Poderys, V.; Matulionyte, M.; Selskis, A.; Rotomskis, R. Interaction of water-soluble CdTe quantum dots with bovine serum albumin. Nanoscale Res. Lett. 2011, 6, 9.

37

Alvarez, J.; Liu, J.; Román, E.; Kaifer, A. E. Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin. Chem. Commun. 2000, 1151–1152.

38

Kauscher, U.; Ravoo, B. J. Mannose-decorated cyclodextrin vesicles: The interplay of multivalency and surface density in lectin–carbohydrate recognition. Beilstein J. Org. Chem. 2012, 8, 1543–1551.

39

Chmurski, K.; Defaye, J. An improved synthesis of per(6-deoxyhalo) cyclodextrins using N-halosuccinimides—Triphenylphosphine in dimethylformamide. Supramol. Chem. 2000, 12, 221–224.

40

Rojas, M. T.; Koeniger, R.; Stoddart, J. F.; Kaifer, A. E. Supported monolayers containing preformed binding sites. Synthesis and interfacial binding properties of a thiolated. beta. -cyclodextrin derivative. J. Am. Chem. Soc. 1995, 117, 336–343.

41

Perumal, S.; Hofmann, A.; Scholz, N.; Rühl, E.; Graf, C. Kinetics study of the binding of multivalent ligands on size-selected gold nanoparticles. Langmuir 2011, 27, 4456–4464.

42

Shi, Y.; Goodisman, J.; Dabrowiak, J. C. Cyclodextrin capped gold nanoparticles as a delivery vehicle for a prodrug of cisplatin. Inorg. Chem. 2013, 52, 9418–9426.

43

Villafiorita-Monteoleone, F.; Daita, V.; Quarti, C.; Perdicchia, D.; Del Buttero, P.; Scavia, G.; del Zoppo, M.; Botta, C. Light harvesting of CdSe/CdS quantum dots coated with β-cyclodextrin based host–guest species through resonant energy transfer from the guests. RSC Adv. 2014, 4, 28886–28892.

44

Ambrosi, M.; Cameron, N. R.; Davis, B. G. Lectins: Tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 2005, 3, 1593–1608.

45

Otten, L.; Gibson, M. I. Discrimination between lectins with similar specificities by ratiometric profiling of binding to glycosylated surfaces; a chemical "tongue" approach. RSC Adv. 2015, 5, 53911–53914.

46

Zhang, J. T.; Cai, Z. Y.; Kwak, D. H.; Liu, X. Y.; Asher, S. A. Two-dimensional photonic crystal sensors for visual detection of lectin concanavalin A. Anal. Chem. 2014, 86, 9036–9041.

47

Chen, Q. S.; Wei, W. L.; Lin, J. M. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens. Bioelectron. 2011, 26, 4497–4502.

48

Lim, K. R.; Ahn, K. S.; Lee, W. Y. Detection of concanavalin A based on attenuated fluorescence resonance energy transfer between quantum dots and mannose-stabilized gold nanoparticles. Anal. Methods 2013, 5, 64–67.

49

Szunerits, S.; Niedziǒłka-Jönsson, J.; Boukherroub, R.; Woisel, P.; Baumann, J. S.; Siriwardena, A. Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces. Anal. Chem. 2010, 82, 8203–8210.

50

Sato, K.; Anzai, J. -i. Fluorometric determination of sugars using fluorescein-labeled concanavalin A–glycogen conjugates. Anal. Bioanal. Chem. 2006, 384, 1297–1301.

51

Wang, X.; Ramström, O.; Yan, M. D. Dynamic light scattering as an efficient tool to study glyconanoparticle–lectin interactions. Analyst 2011, 136, 4174–4178.

52

Hone, D. C.; Haines, A. H.; Russell, D. A. Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir 2003, 19, 7141–7144.

53

Schofield, C. L.; Haines, A. H.; Field, R. A.; Russell, D. A. Silver and gold glyconanoparticles for colorimetric bioassays. Langmuir 2006, 22, 6707–6711.

54

Bogdan, N.; Vetrone, F.; Roy, R.; Capobianco, J. A. Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J. Mater. Chem. 2010, 20, 7543–7550.

55

Lyu, Y. -K.; Lim, K. -R.; Lee, B. Y.; Kim, K. S.; Lee, W. -Y. Microgravimetric lectinbiosensor based on signal amplification using carbohydrate-stabilized gold nanoparticles. Chem. Commun. 2008, 4771–4773.

56

Mahon, E.; Mouline, Z.; Silion, M.; Gilles, A.; Pinteala, M.; Barboiu, M. Multilayer lectin–glyconanoparticles architectures for QCM enhanced detection of sugar–protein interaction. Chem. Commun. 2013, 49, 3004–3006.

57

Min, I. -H.; Choi, L.; Ahn, K. -S.; Kim, B. K.; Lee, B. Y.; Kim, K. S.; Choi, H. N.; Lee, W. -Y. Electrochemical determination of carbohydrate-binding proteins using carbohydrate-stabilized gold nanoparticles and silver enhancement. Biosens. Bioelectron. 2010, 26, 1326–1331.

58

Vedala, H.; Chen, Y.; Cecioni, S.; Imberty, A.; Vidal, S.; Star, A. Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. Nano Lett. 2011, 11, 170–175.

Nano Research
Pages 1904-1912
Cite this article:
Oikonomou M, Wang J, Carvalho RR, et al. Ternary supramolecular quantum-dot network flocculation for selective lectin detection. Nano Research, 2016, 9(7): 1904-1912. https://doi.org/10.1007/s12274-016-1082-1

581

Views

7

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 23 December 2015
Revised: 16 March 2016
Accepted: 21 March 2016
Published: 20 May 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return