Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Aggregation-induced emission (AIE) luminogen displays bright fluorescence and has photobleaching resistance in its aggregation state. It is an ideal fluorescent contrast agent for bioimaging. Multiphoton microscopy is an important tool for bioimaging since it possesses the ability to penetrate deep into biological tissues. Herein, we used AIE luminogen together with multiphoton microscopy for long-term imaging of zebrafish. A typical AIE luminogen, 2, 3-bis(4-(phenyl(4- (1, 2, 2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN or TTF), was encapsulated with 1, 2-distearoyl-sn-glycero-3-phosphoethanola-mine-N-[methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) to form nanodots that exhibited bright three-photon fluorescence under 1, 560 nm-femtosecond (fs) laser excitation. The TTF-nanodots were chemically stable in a wide range of pH values and showed no in vivo toxicity in zebrafish according to a series of biological tests. The TTF-nanodots were microinjected into zebrafish embryos, and the different growth stages of the labeled embryos were monitored with a three-photon fluorescence microscope. TTF-nanodots could be traced inside the zebrafish body for as long as 120 hours. In addition, the TTF-nanodots were utilized to target the blood vessel of zebrafish, and three-photon fluorescence angiogram was performed. More importantly, these nanodots were highly resistant to photobleaching under 1, 560 nm-fs excitation, allowing long-term imaging of zebrafish.
Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224.
Domaille, D. W.; Que, E. L.; Chang, C. J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol. 2008, 4, 168–175.
Hidalgo, M.; Urbano, M.; Ortiz, I.; Demyda-Peyras, S.; Murabito, M. R.; Gá lvez, M. J.; Dorado, J. DNA integrity of canine spermatozoa during chill storage assessed by the sperm chromatin dispersion test using bright-field or fluorescence microscopy. Theriogenology 2015, 84, 399–406.
Tsachaki, M.; Birk, J.; Egert, A.; Odermatt, A. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions. Biochim. Biophys. Acta 2015, 1853, 1672–1682.
Chin, W. W. L.; Thong, P. S. P.; Bhuvaneswari, R.; Soo, K. C.; Heng, P. W. S.; Olivo, M. In-vivo optical detection of cancer using chlorin e6–polyvinylpyrrolidone induced fluorescence imaging and spectroscopy. BMC Med. Imaging 2009, 9, 1.
Ling, X. X.; Zhang, S. J.; Shao, P.; Li, W. X.; Yang, L.; Ding, Y.; Xu, C.; Stella, N.; Bai, M. F. A novel near-infrared fluorescence imaging probe that preferentially binds to cannabinoid receptors CB2R over CB1R. Biomaterials 2015, 57, 169–178.
Chan, M. M.; Gray, B. D.; Pak, K. Y.; Fong, D. Non-invasive in vivo imaging of arthritis in a collagen-induced murine model with phosphatidylserine-binding near-infrared (NIR) dye. Arthritis Res. Ther. 2015, 17, 50.
Zhou, B. J.; Liu, W. M.; Zhang, H. Y.; Wu, J. S.; Liu, S.; Xu, H. T.; Wang, P. F. Imaging of nucleolar RNA in living cells using a highly photostable deep-red fluorescent probe. Biosens. Bioelectron. 2015, 68, 189–196.
Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.
Sevick-Muraca, E. M.; Houston, J. P.; Gurfinkel, M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr. Opin. Chem. Biol. 2002, 6, 642–650.
So, P. T. C.; Dong, C. Y.; Masters, B. R.; Berland, K. M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2000, 2, 399–429.
Kobat, D.; Durst, M. E.; Nishimura, N.; Wong, A. W.; Schaffer, C. B.; Xu, C. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 2009, 17, 13354–13364.
Kobat, D.; Horton, N. G.; Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 2011, 16, 106014.
Kim, H. M.; Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 2015, 115, 5014–5055.
Li, D. D.; Zhang, Q.; Wang, X. C.; Li, S. L.; Zhou, H. P.; Wu, J. Y.; Tian, Y. P. Self-assembly of a series of thiocyanate complexes with high two-photon absorbing active in near-IR range and bioimaging applications. Dyes Pigm. 2015, 120, 175–183.
Horton, N. G.; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.; Schaffer, C. B.; Xu, C. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 2013, 7, 205–209.
Daly, C. J.; McGrath, J. C. Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol. Ther. 2003, 100, 101–118.
Chen, F. Q.; Gerion, D. Fluorescent CdSe/ZnS nanocrystalpeptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004, 4, 1827–1832.
Jaiswal, J. K.; Goldman, E. R.; Mattoussi, H.; Simon, S. M. Use of quantum dots for live cell imaging. Nat. Methods 2004, 1, 73–78.
Shah, B. S.; Clark, P. A.; Moioli, E. K.; Stroscio, M. A.; Mao, J. J. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett. 2007, 7, 3071–3079.
Meng, Y. G.; Liang, J.; Wong, W. L.; Chisholm, V. Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 2000, 242, 201–207.
Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 2011, 8, 393–399.
Kim, H. M.; Cho, B. R. Two-photon materials with large two-photon cross sections. Structure-property relationship. Chem. Commun. 2009, 153–164.
Qian, J.; Wang, D.; Cai, F. L.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33, 4851–4860.
Palma, A.; Alvarez, L. A.; Scholz, D.; Frimannsson, D. O.; Grossi, M.; Quinn, S. J.; O'Shea, D. F. Cellular uptake mediated off/on responsive near-infrared fluorescent nanoparticles. J. Am. Chem. Soc. 2011, 133, 19618–19621.
Birks, J. B. Photophysics of Aromatic Molecules; Wiley- Interscience: London, 1970.
Wagh, A.; Qian, S. Y.; Law, B. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging. Bioconjugate Chem. 2012, 23, 981–992.
Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.
Qin, W.; Li, K.; Feng, G. X.; Li, M.; Yang, Z. Y.; Liu, B.; Tang, B. Z. Bright and photostable organic fluorescent dots with aggregation-induced emission characteristics for noninvasive long-term cell imaging. Adv. Funct. Mater. 2014, 24, 635–643.
Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregationinduced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.
Hu, R.; Yang, C. B.; Wang, Y. C.; Lin, G. M.; Qin, W.; Ouyang, Q. L.; Law, W. C.; Nguyen, Q. T.; Yoon, H.; Wang, X. M. et al. Aggregation-induced emission (AIE) dye loaded polymer nanoparticles for gene silencing in pancreatic cancer and their in vitro and in vivo biocompatibility evaluation. Nano Res. 2015, 8, 1563–1576.
Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X. H. N. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007, 1, 133–143.
Wang, Y. L.; Seebald, J. L.; Szeto, D. P.; Irudayaraj, J. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging. ACS Nano 2010, 4, 4039–4053.
Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J. L.; Liu, R. R.; Liu, J. Z.; Zhang, X. H.; Liu, H. W.; Liu, B. et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci. Rep. 2013, 3, 1150.
Li, K.; Zhao, X.; Zhai, Y.; Chen, G.; Lee, E. H.; He, S. A study on the biocompatibility of surface-modified Au/Ag alloyed nanobox particles in zebrafish in terms of mortality rate, hatch rate and imaging of particle distribution behavior. Prog. Electromagn. Res. 2015, 150, 89–96.
Duan, J. C.; Yu, Y. B.; Li, Y.; Yu, Y.; Sun, Z. W. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 2013, 34, 5853–5862.
Zhai, Y. X.; Zhao, X. Y.; Sheng, J. H.; Gao, X. W.; Ou, Z.; Xu, Z. P. Ribonuclease like 5 regulates zebrafish yolk extension by suppressing a p53-dependent DNA damage response pathway. Int. J. Biochem. Cell. Biol. 2015, 69, 12–19.
Qian, J.; Zhu, Z. F.; Qin, A. J.; Qin, W.; Chu, L. L.; Cai, F. H.; Zhang, H. Q.; Wu, Q.; Hu, R. R.; Tang, B. Z. et al. High-order non-linear optical effects in organic luminogens with aggregation-induced emission. Adv. Mater. 2015, 27, 2332–2339.
He, G. S.; Tan, L. S.; Zheng, Q. D.; Prasad, P. N. Multiphoton absorbing materials: Molecular designs, characterizations, and applications. Chem. Rev. 2008, 108, 1245–1330.
Kimmel, C. B.; Ballard, W. W.; Kimmel, S. R.; Ullmann, B.; Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310.
Cheng, H.; Qin, W.; Zhu, Z. F.; Qian, J.; Qin, A.; Tang, B. Z.; He, S. Nanoparticles with aggregation-induced emission for monitoring long time cell membrane interactions. Prog. Electromagn. Res. 2013, 140, 313–325.