AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition

Xu Chen1Lucheng Peng1Keke Huang2Zhan Shi2Renguo Xie1( )Wensheng Yang1
College of ChemistryJilin UniversityChangchun130012China
State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
Show Author Information

Graphical Abstract

Abstract

Metal-halide perovskites are novel optoelectronic materials that are considered good candidates for solar harvesting and light emitting applications. In this study, we develop a reproducible and low-cost approach for synthesizing highquality cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I or Cl/Br and I/Br) nanocrystals (NCs) by direct heating of precursors in octadecene in air. Experimental results show that the particle size and composition of as-prepared CsPbX3 nanocrystals can be successfully tuned by a simple variation of reaction temperature. The emission peak positions of the as-prepared nanocrystals can be conveniently tuned from the UV to the NIR (360–700 nm) region, and the quantum yield of the as-obtained samples (green and red emissions) can reach up to 87%. The structures and chemical compositions of the as-obtained NCs were characterized by transmission electron microscopy, X-ray diffraction, and elemental analysis. This proposed synthetic route can yield large amounts of high-quality NCs with a one-batch reaction, usually on the gram scale, and could pave the way for further applications of perovskite-based light-emitting and photovoltaic solar cells.

Electronic Supplementary Material

Download File(s)
nr-9-7-1994_ESM.pdf (691 KB)

References

1

Shen, H. B.; Cao, W. R.; Shewmon, N. T.; Yang, C. C.; Li, L. S.; Xue, J. G. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Lett. 2015, 15, 1211–1216.

2

Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Mandera, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. Highefficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

3

Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Airstable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.

4

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

5

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183.

6

Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Cohnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890.

7

Hetsch, F.; Zhao, N.; Kershaw, S. V.; Rogach, A. L. Quantum dot field effect transistors. Mater. Today 2013, 16, 312–325.

8

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

9

Lan, X. Z.; Masala, S.; Sargent, E. H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat. Mater. 2014, 13, 233–240.

10

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

11

Kovalenko, M. V.; Manna, L.; Cabot, A.; Hens, Z.; Talapin, D. V.; Kagan, C. R.; Klimov, V. I.; Rogach, A. L.; Reiss, P.; Milliron, D. J. et al. Prospects of nanoscience with nanocrystals. ACS Nano 2015, 9, 1012–1057.

12

Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

13

Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

14

Sun, L. F.; Choi, J. J.; Stachnik, D.; Bartnik, A. C.; Hyun, B. R.; Malliaras, G. G.; Hanrath, T.; Wise, F. W. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 2012, 7, 369–373.

15

Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, S. H.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.

16

Aldakov, D; Lefrançois, A.; Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications. J. Mater. Chem. C 2013, 1, 3756–3776.

17

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.

18

Fan, F. J.; Wu, L.; Yu, S. H. Energetic Ⅰ–Ⅲ–Ⅵ2 and Ⅰ2–Ⅱ–Ⅳ–Ⅵ4 nanocrystals: Synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 2014, 7, 190–208.

19

Yu, X. L.; Shavel, A.; An, X. Q.; Luo, Z. S.; Ibáñez, M.; Cabot, A. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J. Am. Chem. Soc. 2014, 136, 9236–9239.

20

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S. Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

21

Peron, G. E.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 2014, 8, 591–598.

22

Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P. H.; Kanatzidis, M. G. Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 2014, 136, 16411–16419.

23

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

24

Yan, K. Y.; Long, M. Z.; Zhang, T. K.; Wei, Z. H.; Chen, H. N.; Yang, S. H.; Xu, J. B. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 2015, 137, 4460–4468.

25

Im, J. H.; Jang, I. H.; Pellet, N.; Grätzel, M.; Park, N. G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 2014, 9, 927–932.

26

Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.

27

Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584–1589.

28

Xiao, Z. G.; Dong, Q. F.; Bi, C.; Shao, Y. C.; Yuan Y. B.; Huang, J. S. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503–6509.

29

Yang, S.; Zheng, Y. C.; Hou, Y.; Chen, X.; Chen, Y.; Wang, Y.; Hao, H. J.; Yang, H. G. Formation mechanism of freestanding CH3NH3PbI3 functional crystals: In situ transformation vs dissolution–crystallization. Chem. Mater. 2014, 26, 6705–6710.

30

Sadhanala, A.; Ahmad, S.; Zhao, B. D.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L. Z.; Gödel, K. C.; Bein, T.; Docampo, P. et al. Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 2015, 15, 6095–6101.

31

Zhou, Y. Y.; Game, O. S.; Pang, S. P.; Padture, N. P. Microstructures of organometal trihalide perovskites for solar cells: Their evolution from solutions and characterization. J. Phys. Chem. Lett. 2015, 6, 4827–4839.

32

Kim, Y. H.; Cho, H.; Heo, J. H.; Kim, T. S.; Myoung, N.; Lee, C. L.; Im, S. H.; Lee, T. W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 2015, 27, 1248–1257.

33

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

34

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zuo B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

35

Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

36

Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Dong, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

37

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; de Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Commun. 2015, 6, 8056–8065.

38

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Wals, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

39

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

40

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

41

Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

42

Kwon, S. G.; Piao, Y. Z.; Park, J.; Angappane, S.; Ho, Y.; Hwang, N. M.; Park, J. G.; Hyeon, T. Kinetics of monodisperse iron oxide nanocrystal formation by "heating-up" process. J. Am. Chem. Soc. 2007, 129, 12571–12584.

43

Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

44

Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 2010, 4, 5253–5262.

45

Kwon, S. G.; Hyeon, T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011, 7, 2685–2702.

46

Cao, Y. C.; Wang, J. H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 2004, 126, 14336–14337.

47

Peng, L. C.; Li, D. Z.; Zhang, Z. L.; Huang, K. K.; Zhang, Y.; Shi, Z.; Xie, R. G.; Yang, W. S. Large-scale synthesis of single-source, thermally stable, and dual-emissive Mn-doped Zn–Cu–In–S nanocrystals for bright white light-emitting diodes. Nano Res. 2015, 8, 3316–3331.

48

Li, D. Z.; Peng, L. C.; Zhang, Z. L.; Shi, Z.; Xie, R. G.; Han, M. Y.; Yang, W. S. Large scale synthesis of air stable precursors for the preparation of high quality metal arsenide and phosphide nanocrystals as efficient emitters covering the visible to near infrared region. Chem. Mater. 2014, 26, 3599–3602.

49

Park, J.; Kim, S. W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J. Mater. Chem. 2011, 21, 3745–3750.

50

Chen, Y. Y.; Li, S. J.; Huang, L. J.; Pan, D. C. Green and facile synthesis of water-soluble Cu–In–S/ZnS core/shell quantum dots. Inorg. Chem. 2013, 52, 7819–7821.

51

Chen, B.; Zhong, H. Z.; Zhang, W. Q.; Tan, Z. A.; Li, Y. F.; Yu, C. R.; Zhai, T. Y.; Bando, Y.; Yang, S. Y.; Zou, B. S. Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: Off-stoichiometry effects and improved electroluminescence performance. Adv. Funct. Mater. 2012, 22, 2081–2088.

52

Zhang, W. J.; Lou, Q.; Ji, W. Y.; Zhao, J. L.; Zhong, X. H. Color-tunable highly bright photoluminescence of cadmiumfree Cu-doped Zn–In–S nanocrystals and electroluminescence. Chem. Mater. 2014, 26, 1204–1212.

53

De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D'Andrea, C.; Tassone, F.; Manna, L. Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1-x3InS2 nanocrystals by partial cation exchange. Chem. Mater. 2012, 24, 2400–2406.

54

Zhang, J.; Xie, R. G.; Yang, W. S. A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chem. Mater. 2011, 23, 3357–3361.

55

Yang, G. L.; Zhong, H. Z.; Bai, Z. L.; Liu R. B.; Zou, B. S. Ultralong homogeneously alloyed CdSexS1–x nanowires with highly polarized and color-tunable emissions. Adv. Opt. Mater. 2014, 2, 885–891.

56

Kim, J. P.; Christians, J. A.; Choi, H.; Krishnamurthy, S.; Kamat, P. V. CdSeS nanowires: Compositionally controlled band gap and exciton dynamics. J. Phys. Chem. Lett. 2014, 5, 1103–1109.

57

Deng, Z. T.; Yan, H.; Liu, Y. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method. J. Am. Chem. Soc. 2009, 131, 17744–17745.

58

Pons, T.; Lequeux, N.; Mahler, B.; Sasnouski, S.; Fragola, A.; Dobertret, B. Synthesis of near-infrared-emitting, watersoluble CdTeSe/CdZnS core/shell quantum dots. Chem. Mater. 2009, 21, 1418–1424.

59

Wang, R. B.; Calvignanello, O.; Ratcliffe, C. I.; Wu, X. H.; Leek, D. M.; Zaman, M. B.; Kingston, D.; Ripmeester, J. A.; Yu, K. Homogeneously-alloyed CdTeSe single-sized nanocrystals with bandgap photoluminescence. J. Phys. Chem. C 2009, 113, 3402–3408.

60

Gaponik, N.; Hickey, S. G.; Dorfs, D.; Rogach, A. L.; Eychmüller, A. Progress in the light emission of colloidal semiconductor nanocrystals. Small 2010, 6, 1364–1378.

61

Protière, M.; Nerambourg, N.; Renard, O.; Reiss, P. Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals. Nanoscale Res. Lett. 2011, 6, 472.

62

Zhang, J.; Xie, R. G.; Yang, W. S. A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chem. Mater. 2011, 23, 3357–3361.

63

Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.

64

Zhong, H.; Zhou, Y.; Ye, M.; He, Y.; Ye, J.; He, C.; Yang, C.; Li, Y. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater. 2008, 20, 6434–6443.

65

Bae, W. K.; Char, K.; Hur, H.; Lee, S. Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 2008, 20, 531–539.

66

Cho, J.; Jung, Y. K.; Lee, J. K. Kinetic studies on the formation of various II–Ⅵ semiconductor nanocrystals and synthesis of gradient alloy quantum dots emitting in the entire visible range. J. Mater. Chem. 2012, 22, 10827–10833.

67

Xie, R. G.; Kolb, U.; Li, J. X.; Basché, T.; Mews, A. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488.

68

Xie, R. G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core–shell nanocrystals. Angew. Chem., Int. Et. 2008, 47, 7677–7680.

69

Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of highquality Ⅰ-Ⅲ-Ⅵ semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691–5697.

70

Zhang, Z. L.; Liu, D.; Li, D. Z.; Huang, K. K.; Zhang, Y.; Shi, Z.; Xie, R. G.; Han, M. Y.; Wang, Y.; Yang, W. S. Dual emissive Cu: InP/ZnS/InP/ZnS nanocrystals: Singlesource "greener" emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes. Chem. Mater. 2015, 27, 1405–1411.

71

Tan, Z. -K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692.

72

Wang, J. P.; Wang, N.; Jin, Y. Z.; Si, J. J.; Tan, Z. -K.; Du, H.; Cheng, L.; Dai, X. L.; Bai, S.; He, H. P. et al. Interfacial control toward efficient and low-voltage perovskite lightemitting diodes. Adv. Mater. 2015, 27, 2311–2316.

Nano Research
Pages 1994-2006
Cite this article:
Chen X, Peng L, Huang K, et al. Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Research, 2016, 9(7): 1994-2006. https://doi.org/10.1007/s12274-016-1090-1

753

Views

97

Crossref

N/A

Web of Science

94

Scopus

5

CSCD

Altmetrics

Received: 05 February 2016
Revised: 30 March 2016
Accepted: 02 April 2016
Published: 29 April 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return