AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bromide ion mediated modification to digestive ripening process: Preparation of ultra-small Pd, Pt, Rh and Ru nanoparticles

Jhumur SethBhagavatula L. V. Prasad( )
Physical and Material Chemistry DivisionNational Chemical Laboratory (CSIR-NCL)Dr. Homi Bhabha RoadPune411008India
Show Author Information

Graphical Abstract

Abstract

Nanoparticles of catalytically important transition metals, such as Pd, Pt, Rh, and Ru have been prepared by the well-known "digestive ripening" (DR) and "modified digestive ripening" (mDR) methods. In the traditional DR process, a polydisperse colloidal dispersion is refluxed in the presence of a surface-active molecule, such as alkanethiol. The mDR method involved a small modification in the procedure, wherein refluxing was performed with an alkanethiol and a tetra-alkylammonium bromide surfactant. This minor modification led to a dramatic change in the final particle size distributions, giving access to nanoparticles in the < 3 nm size regime; this was not possible with the traditional DR process. Bromide ions, which are present during refluxing, proved to be an important ingredient in the modification process. These bromide ions are revealed to act as etchants, resulting in ultra-small nanoparticles. All transition metal nanoparticles investigated displayed catalytic activity in the reduction reaction of p-nitro phenol. Pd nanoparticles, synthesized by a modified digestive ripening method, exhibited the best catalytic activity among the systems investigated.

Electronic Supplementary Material

Download File(s)
nr-9-7-2007_ESM.pdf (2.5 MB)

References

1

Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.

2

Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

3

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a twophase liquid–liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.

4

Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizerligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

5

Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.

6

Dai, Y.; Liu, S. J.; Zheng, N. F. C2H2 treatment as a facile method to boost the catalysis of Pd nanoparticulate catalysts. J. Am. Chem. Soc. 2014, 136, 5583–5586.

7

Weng, Z. H.; Zaera, F. Increase in activity and selectivity in catalysis via surface modification with self-assembled monolayers. J. Phys. Chem. C 2014, 118, 3672–3679.

8

Sankar, M.; He, Q.; Morad, M.; Pritchard, J.; Freakley, S. J.; Edwards, J. K.; Taylor, S. H.; Morgan, D. J.; Carley, A. F.; Knight, D. W. et al. Synthesis of stable ligand-free goldpalladium nanoparticles using a simple excess anion method. ACS Nano 2012, 6, 6600–6613.

9

Kwon, S. G.; Krylova, G.; Sumer, A.; Schwartz, M. M.; Bunel, E. E.; Marshall, C. L.; Chattopadhyay, S.; Lee, B.; Jellinek, J. Shevchenko, E. V. Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett. 2012, 12, 5382–5388.

10

Seth, J.; Kona, C. N.; Das, S.; Prasad, B. L. V. A simple method for the preparation of ultra-small palladium nanoparticles and their utilization for the hydrogenation of terminal alkyne groups to alkanes. Nanoscale 2015, 7, 872–876.

11

Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 2014, 47, 1438–1445.

12

Kahsar, K. R.; Schwartz, D. K.; Medlin, J. W. Selective hydrogenation of polyunsaturated fatty acids using alkanethiol self-assembled monolayer-coated Pd/Al2O3 catalysts. ACS Catal. 2013, 3, 2041–2044.

13

Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem., Int. Ed. 2014, 53, 4623–4627.

14

Metin, Ö.; Ho, S. F.; Alp, C.; Can, H. S.; Mankin, M. N.; Gültekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10–18.

15

Wang, C.; Peng, S.; Lacroix, L. -M.; Sun, S. H. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009, 2, 380–385.

16

Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir, 2002, 18, 7515–7520.

17

Sidhaye, D. S.; Prasad, B. L. V. Many manifestations of digestive ripening: Monodispersity, superlattices and nanomachining. New J. Chem. 2011, 35, 755–763.

18

Singh, S.; Prasad, B. L. V. Nearly complete oxidation of Au0 in hydrophobized nanoparticles to Au3+ ions by Nbromosuccinimide. J. Phys. Chem. C 2007, 111, 14348–14352.

19

Yang, P.; Zhang, X. Nucleic acid-mediated gold oxidation: Novel biolithography for surface microfabrication and new insight into gold-based biomaterials. Chem. Commun. 2012, 48, 8787–8789.

20

Jiang, Y. Y.; Zhu, G. M.; Lin, F.; Zhang, H.; Jin, C. H.; Yuan, J.; Yang, D. R.; Zhang, Z. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett. 2014, 14, 3761–3765.

21

Ramtenki, V.; Anumon, V. D.; Badiger, M. V.; Prasad, B. L. V. Gold nanoparticle embedded hydrogel matrices as catalysts: Better dispersibility of nanoparticles in the gel matrix upon addition of N-bromosuccinimide leading to increased catalytic efficiency. Colloid. Surface. A 2012, 414, 296–301.

22

Hariprasad, E.; Radhakrishnan, T. P. A highly efficient and extensively reusable "dip catalyst" based on a silvernanoparticle- embedded polymer thin film. Chem. —Eur. J. 2010, 16, 14378–14384.

23

Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev. 2015, 115, 6621–6685.

24

Aleksandrov. H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 53, 13371–13375.

Nano Research
Pages 2007-2017
Cite this article:
Seth J, Prasad BLV. Bromide ion mediated modification to digestive ripening process: Preparation of ultra-small Pd, Pt, Rh and Ru nanoparticles. Nano Research, 2016, 9(7): 2007-2017. https://doi.org/10.1007/s12274-016-1091-0

663

Views

18

Crossref

N/A

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 26 January 2016
Revised: 22 March 2016
Accepted: 05 April 2016
Published: 10 May 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return