Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption

Yunan Li1Yong Zhao1Xianyong Lu1()Ying Zhu1()Lei Jiang1,2
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of Chemistry and EnvironmentBeihang UniversityBeijing100191China
Laboratory of Bio-inspired Smart Interfacial ScienceTechnology Institute of Physics and ChemistryChinese Academy of ScienceBeijing100190China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole (F-PVDF/Fe3O4@PPyx ) fibers with core–sheath structure were successfully fabricated by electrospinning of a PVDF/Fe3O4 mixture and in situ chemical oxidative polymerization of pyrrole, followed by chemical vapor deposition with fluoroalkyl silane. The F-PVDF/Fe3O4@PPy0.075 fiber film produces a superhydrophobic surface with self-healing behavior, which can repetitively and automatically restore superhydrophobicity when the surface is chemically damaged. Moreover, the maximum reflection loss (RL) of the F-PVDF/Fe3O4@PPy0.075 fiber film reaches -21.5 dB at 16.8 GHz and the RL below -10 dB is in the frequency range of 10.6–16.5 GHz with a thickness of 2.5 mm. The microwave absorption performance is attributed to the synergetic effect between dielectric loss and magnetic loss originating from PPy, PVDF and Fe3O4. As a consequence, preparing such F-PVDF/Fe3O4@PPyx fibers in this manner provides a simple and effective route to develop multi-functional microwave absorbing materials for practical applications.

Electronic Supplementary Material

Download File(s)
nr-9-7-2034_ESM.pdf (2 MB)

References

1

Chen, D. Z.; Wang, G. S.; He, S.; Liu, J.; Guo, L.; Cao, M. S. Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A 2013, 1, 5996–6003.

2

Liu, X. F.; Chen, Y. X.; Cui, X. R.; Zeng, M.; Yu, R. H.; Wang, G. S. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 2015, 3, 12197–12204.

3

Liu, J. W.; Xu, J. J.; Che, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chem. —Eur. J. 2013, 19, 6746–6752.

4

Wang, L.; Jia, X. L.; Li, Y. F.; Yang, F.; Zhang, L. Q.; Liu, L. P.; Ren, X.; Yang, H. T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles. J. Mater. Chem. A 2014, 2, 14940–14946.

5

Lu, X. Y.; Wu, Y. Z.; Cai, H. Y.; Qu, X. Y.; Ni, L. M.; Teng, C.; Zhu, Y.; Jiang, L. Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. RSC Adv. 2015, 5, 54175–54181.

6

Li, Y. B.; Chen, G.; Li, Q. H.; Qiu, G. Z.; Liu, X. H. Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloy. Compd. 2011, 509, 4104–4107.

7

Oyharçabal, M.; Olinga, T.; Foulc, M. -P.; Lacomme, S.; Gontier, E.; Vigneras, V. Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites. Compos. Sci. Technol. 2013, 74, 107–112.

8

Sun, Y. P.; Xiao, F.; Liu, X. G.; Feng, C.; Jin, C. G. Preparation and electromagnetic wave absorption properties of core–shell structured Fe3O4–polyaniline nanoparticles. RSC Adv. 2013, 3, 22554–22559.

9

Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, S. Y.; Sun, C. H.; Yan, J.; Chen, P. Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3, 4- ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845.

10

Xiang, J.; Li, J. L.; Zhang, X. H.; Ye, Q.; Xu, J. H.; Shen, X. Q. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and highperformance electromagnetic wave absorbers. J. Mater. Chem. A 2014, 2, 16905–16914.

11

Chen, Y. -H.; Huang, Z. -H.; Lu, M. -M.; Cao, W. -Q.; Yuan, J.; Zhang, D. -Q.; Cao, M. -S. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A 2015, 3, 12621–12625.

12

Cui, C. K.; Du, Y. C.; Li, T. H.; Zheng, X. Y.; Wang, X. H.; Han, X. J.; Xu, P. Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. B 2012, 116, 9523–9531.

13

Liu, T.; Pang, Y.; Zhu, M.; Kobayashi, S. Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 2014, 6, 2447–2454.

14

Jiang, L.; Zhao, Y.; Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. 2004, 116, 4438–4441.

15

Manna, U.; Lynn, D. M. Restoration of superhydrophobicity in crushed polymer films by treatment with water: Self-healing and recovery of damaged topographic features aided by an unlikely source. Adv. Mater. 2013, 25, 5104–5108.

16

Li, Y.; Li, L.; Sun, J. Q. Bioinspired self-healing superhydrophobic coatings. Angew. Chem., Int. Ed. 2010, 49, 6129–6133.

17

Zhou, H.; Wang, H. X.; Niu, H. T.; Gestos, A.; Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Func. Mater. 2013, 23, 1664–1670.

18

Lu, X. Y.; Niu, M.; Qiao, R. R.; Gao, M. Y. Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a "one-pot" reaction. J. Phys. Chem. B 2008, 112, 14390–14393.

19

Maity, D.; Kale, S. N.; Kaul-Ghanekar, R.; Xue, J. M.; Ding, J. Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (Ⅲ) acetylacetonate in tri(ethylene glycol). J. Magn. Magn. Mater. 2009, 321, 3093–3098.

20

Lu, G. W.; Li, C.; Shi, G. Q. Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer 2006, 47, 1778–1784.

21

Zhang, X. J.; Wang, G. S.; Cao, W. Q.; Wei, Y. Z.; Liang, J. F.; Guo, L.; Cao, M. S. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 2014, 6, 7471–7478.

22

Liu, T.; Zhou, P. H.; Xie, J. L.; Deng, L. J. The hierarchical architecture effect on the microwave absorption properties of cobalt composites. J. Appl. Phys. 2011, 110, 033918.

23

Meng, X. M.; Zhang, X. J.; Lu, C.; Pan, Y. F.; Wang, G. S. Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3 + PVDF) and carbon black nanoparticles. J. Mater. Chem. A 2014, 2, 18725–18730.

24

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

25

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

26

Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X. -J.; Yu, R. H.; Wang, G. -S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles–poly(vinylidene fluoride) composites. Carbon 2015, 95, 870–878.

27

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956.

28

Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

29

Wang, H.; Dai, Y. Y.; Geng, D. Y.; Ma, S.; Li, D.; An, J.; He, J.; Liu, W.; Zhang, Z. D. CoxNi100 x nanoparticles encapsulated by curved graphite layers: Controlled in situ metal-catalytic preparation and broadband microwave absorption. Nanoscale 2015, 7, 17312–17319.

30

Zhou, W. C.; Hu, X. J.; Sun, C. H.; Yan, J.; Zhou, S. Y.; Chen, P. Microwave absorbing properties of Fe3O4-poly(3, 4- ethylenedioxythiophene) hybrids in low-frequency band. Polym. Advan. Technol. 2014, 25, 83–88.

31

Chen, S. S.; Li, X.; Li, Y.; Sun, J. Q. Intumescent flameretardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 2015, 9, 4070–4076.

32

Su, F. H.; Yao, K. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl. Mater. Interfaces 2014, 6, 8762–8770.

33

Xu, W. J.; Song, J. L.; Sun, J.; Lu, Y.; Yu, Z. Y. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl. Mater. Interfaces 2011, 3, 4404–4414.

Nano Research
Pages 2034-2045
Cite this article:
Li Y, Zhao Y, Lu X, et al. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Research, 2016, 9(7): 2034-2045. https://doi.org/10.1007/s12274-016-1094-x
Metrics & Citations  
Article History
Copyright
Return