Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report the preparation and encapsulation properties of stimuli-responsive nanocapsules, self-assembled by the noncovalent interactions of cyclodextrinappended polymers (host) and complementary ferrocene or azobenzene carriers (guest). The encapsulation process was significantly accelerated by applying (electro) chemical or light stimulus, enabling the easier and faster diffusion of guest molecules through the polymer layers. The nanocapsules were characterized by dynamic light scattering, confocal microscopy, ESEM, AFM, UV–visible and fluorescence spectroscopy, and electrochemical techniques. The encapsulation and release properties of the nanocapsules were reversible and could be repeated several times, indicating that the prepared nanoassemblies are very stable.
Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Mü ller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, J.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuliresponsive polymer materials. Nat. Mater. 2010, 9, 101–113.
Chen, T.; Ferris, R.; Zhang, J. M.; Ducker, R.; Zauscher, S. Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Progr. Polym. Sci. 2010, 35, 94–112.
Peyratout, C. S.; Dähne, L. Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angew. Chem., Int. Ed. 2004, 43, 3762–3783.
Shchukin, D. G.; Shchukina, E. Capsules with external navigation and triggered release. Curr. Opin. Pharmacol. 2014, 18, 42–46.
Yi, Q. Y.; Sukhorukov, G. B. UV light stimulated encapsulation and release by polyelectrolyte microcapsules. Adv. Colloid Interface Sci. 2014, 207, 280–288.
Cui, J. W.; van Koeverden, M. P.; Müllner, M.; Kempe, K.; Caruso, F. Emerging methods for the fabrication of polymer capsules. Adv. Colloid Interface Sci. 2014, 207, 14–31.
Chi, X. D.; Ji, X. F.; Xia, D. Y.; Huang, F. H. A dualresponsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillarai][7]arene and an azobenzenecontaining random copolymer. J. Am. Chem. Soc. 2015, 137, 1440–1443.
Bédard, M. F.; De Geest, B. G.; Skirtach, A. G.; Möhwald, H.; Sukhorukov, G. B. Polymeric microcapsules with light responsive properties for encapsulation and release. Adv. Colloid Interface Sci. 2010, 158, 2–14.
Tao, X.; Li, J. B.; Möhwald, H. Self-Assembly, optical behavior, and permeability of a novel capsule based on an azo dye and polyelectrolytes. Chem. —Eur. J. 2004, 10, 3397–3403.
Bédard, M.; Skirtach, A. G.; Sukhorukov, G. B. Optically driven encapsulation using novel polymeric hollow shells containing an azobenzene polymer. Macromol. Rapid Commun. 2007, 28, 1517–1521.
Lin, H.; Xiao, W.; Qin, S. -Y.; Cheng, S. -X.; Zhang, X. -Z. Switch on/off microcapsules for controllable photosensitive drug release in a "release-cease-recommence" mode. Polym. Chem. 2014, 5, 4437–4440.
Yi, Q. Y.; Sukhorukov, G. B. UV-induced disruption of microcapsules with azobenzene groups. Soft Matter 2014, 10, 1384–1391.
Huo, M.; Yuan, J. Y.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: From molecular design to applications. Polym. Chem. 2014, 5, 1519–1528.
Zhao, M. X.; Biswas, A.; Hu, B. L.; Joo, K. -I.; Wang, P.; Gu, Z.; Tang, Y. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 2011, 32, 5223–5230.
Crucho, C. I. C. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2015, 10, 24–38.
Ma, Y. J.; Dong, W. -F.; Hempenius, M. A.; Möhwald, H.; Vancso, G. J. Redox-controlled molecular permeability of composite-wall microcapsules. Nat. Mater. 2006, 5, 724–729.
Wang, Z. P.; Möhwald, H.; Gao, C. Y. Preparation and redox-controlled reversible response of ferrocene-modified poly(allylamine hydrochloride) microcapsules. Langmuir 2011, 27, 1286–1291.
Nijhuis, C. A.; Boukamp, B. A.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Electrochemistry of ferrocenyl dendrimer-β-cyclodextrin assemblies at the interface of an aqueous solution and a molecular printboard. J. Phys. Chem. C, 2007, 111, 9799–9810.
Ortiz, M.; Wajs, E.; Fragoso, A.; O'Sullivan, C. K. A bienzymatic amperometric immunosensor exploiting supramolecular construction for ultrasensitive protein detection. Chem. Commun. 2012, 48, 1045–1047.
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1753.
Villalonga, R.; Cao, R.; Fragoso, A. Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 2007, 107, 3088–3116.
Huskens, J.; Deij, M. A.; Reinhoudt, D. N. Attachment of molecules at a molecular printboard by multiple host–guest interactions. Angew. Chem., Int. Ed. 2002, 41, 4467–4471.
Yamaguchi, H.; Kobayashi, Y.; Kobayashi, R.; Takashma, Y.; Hashidzume, A.; Harada, A. Photoswitchable gel assembly based on molecular recognition. Nat. Commun. 2012, 3, 603.
Takashima, Y.; Hatanaka, S.; Otsubo, M.; Nakahata, M.; Kakuta, T.; Hashidzume, A.; Yamaguchi, H.; Harada, A. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat. Commun. 2012, 3, 1270.
Nakahata, M.; Takashima, Y.; Hashidzume, A.; Harada, A. Redox-generated mechanical motion of a supramolecular polymeric actuator based on host–guest interactions. Angew. Chem., Int. Ed. , 2013, 52, 5731–5736.
Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2011, 2, n511.
Davis, M. E.; Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035.
Zhang, J. X.; Ma, P. X. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective. Adv. Drug Deliv. Rev. 2013, 65, 1215–1233.
Ren, S. D.; Chen, D. Y.; Jiang, M. Noncovalently connected micelles based on a β-cyclodextrin-containing polymer and adamantane end-capped poly(ε-caprolactone) via host–guest interactions J. Polym. Sci. A: Polym. Chem. 2009, 47, 4267–4278.
Cho, S. Y.; Allcock, H. R. Synthesis of adamantyl polyphosphazene-polystyrene block copolymers, and β-Cyclodextrin-adamantyl side group complexation. Macromolecules 2009, 42, 4484–4490.
Wang, Z. P.; Feng, Z. Q.; Gao, C. Y. Stepwise assembly of the same polyelectrolytes using host–guest interaction to obtain microcapsules with multiresponsive properties. Chem. Mater. 2008, 20, 4194–4199.
Li, C.; Luo, G. -F.; Wang, H. -Y.; Zhang, J.; Gong, Y. -H.; Cheng, S. -X.; Zhuo, R. -X.; Zhang, X. -Z. Host–guest assembly of pH-responsive degradable microcapsules with controlled drug release behavior. J. Phys. Chem. C, 2011, 115, 17651–17659.
Wajs, E.; Nielsen, T. T.; Larsen, K. L.; Fragoso, A. Template-assisted preparation of permeable nanocapsules from complementary cyclodextrin and adamantane–appended biocompatible dextran polymers. Macromol. Mater. Eng. 2015, 300, 878–884.
Höfler, T.; Wenz, G. Determination of binding energies between cyclodextrins and aromatic guest molecules by microcalorimetry. J. Inclus. Phenom. Mol. Recognit. Chem. 1996, 25, 81–84.
Zubiaur, M.; Jaime, C. Complexation between tert-butyl ketones and β-cyclodextrin. Structural study by NMR and MDsimulations. J. Org. Chem. 2000, 65, 8139–8145.