AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway

Lin Guo1,2Bo Duan1Lina Zhang1( )
College of Chemistry & Molecule SciencesWuhan UniversityWuhan430072China
State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
Show Author Information

Graphical Abstract

Abstract

In the present work, nanofibrous chitin microsphere (NCM) was prepared via sol–gel transition from a chitin solution dissolved in a NaOH/urea aqueous system at low temperatures. Ag nanoparticles (AgNPs) were synthesized via an in situ reduction of silver nitrate using trisodium citrate dehydrate and were immobilized on chitin nanofibers to obtain composite microspheres that consist of nanofibers and AgNPs (NCM-Ag). The size of AgNPs could be controlled in the range of 10 to 70 nm, depending on the concentration of AgNO3. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analyses showed that the chitin nanofibers have a strong affinity toward AgNPs, resulting from the interaction between the acetamino group of chitin and the AgNPs. The NCM-Ag exhibited a perfect nanoporous structure and high surface area, as well as high stability in organic solvents. Moreover, in the catalytic epoxidation of olefin (particularly, the conversion of styrene to styrene epoxide), NCM-Ag exhibited an excellent selectivity of up to 90%. Converting chitin powder into chitin microspheres using an environmentally friendly technique is a green process, which is beneficial for the large-scale synthesis of industrial products. More importantly, this work provides a green synthetic pathway for the construction of size-controlled noble metal nanoparticles immobilized on nanofiber support, which have a wide range of potential applications.

Electronic Supplementary Material

Download File(s)
nr-9-7-2149_ESM.pdf (1.7 MB)

References

1

Zhao, X. Y. ; Long, R. ; Liu, D. ; Luo, B. B. ; Xiong, Y. J. Pd-Ag alloy nanocages: Integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. J. Mater. Chem. A 2015, 3, 9390-9394.

2

Le Guével, X. ; Perez Perrino, M. ; Fernández, T. D. ; Palomares, F. ; Torres, M. -J. ; Blanca, M. ; Rojo, J. ; Mayorga, C. Multivalent glycosylation of fluorescent gold nanoclusters promotes increased human dendritic cell targeting via multiple endocytic pathways. ACS Appl. Mater. Interfaces 2015, 7, 20945-20956.

3

Tai, Y. -L. ; Yang, Z. -G. Facile and scalable preparation of solid silver nanoparticles (< 10 nm) for flexible electronics. ACS Appl. Mater. Interfaces 2015, 7, 17104-117111.

4

Cunningham, J. C. ; Kogan, M. R. ; Tsai, Y. -J. ; Luo, L. ; Richards, I. ; Crooks, R. M. Paper-based sensor for electrochemical detection of silver nanoparticle labels by galvanic exchange. ACS Sens. 2016, 1, 40-47.

5

Li, B. ; Ye, S. R. ; Stewart, I. E. ; Alvarez, S. ; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 2015, 15, 6722-6726.

6

Liang, M. ; Su, R. X. ; Huang, R. L. ; Qi, W. ; Yu, Y. J. ; Wang, L. B. ; He, Z. M. Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 4638-4649.

7

Annur, D. ; Wang, Z. -K. ; Liao, J. -D. ; Kuo, C. Plasma- synthesized silver nanoparticles on electrospun chitosan nanofiber surfaces for antibacterial applications. Biomacromolecules 2015, 16, 3248-3255.

8

Cao, Q. ; Yuan, K. P. ; Liu, Q. H. ; Liang, C. Y. ; Wang, X. ; Cheng, Y. -F. ; Li, Q. Q. ; Wang, M. ; Che, R. C. Porous Au-Ag alloy particles inlaid AgCl membranes as versatile plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring. ACS Appl. Mater. Interfaces 2015, 7, 18491-18500.

9

Anandhakumar, S. ; Sasidharan, M. ; Tsao, C. -W. ; Raichur, A. M. Tailor-made hollow silver nanoparticle cages assembled with silver nanoparticles: An efficient catalyst for epoxidation. ACS Appl. Mater. Interfaces 2014, 6, 3275-3281.

10

Ghosh, S. ; Acharyya, S. S. ; Tripathi, D. ; Bal, R. Preparation of silver-tungsten nanostructure materials for selective oxidation of toluene to benzaldehyde with hydrogen peroxide. J. Mater. Chem. A 2014, 2, 15726-15733.

11

Li, S. -J. ; Ping, Y. ; Yan, J. -M. ; Wang, H. -L. ; Wu, M. ; Jiang, Q. Facile synthesis of AgAuPd/graphene with high performance for hydrogen generation from formic acid. J. Mater. Chem. A 2015, 3, 14535-14538.

12

Aouf, C. ; Durand, E. ; Lecomte, J. ; Figueroa-Espinoza, M. -C. ; Dubreucq, E. ; Fulcrand, H. ; Villeneuve, P. The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chem. 2014, 16, 1740-1754.

13

Zhu, Y. G. ; Wang, Q. ; Cornwall, R. G. ; Shi, Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem. Rev. 2014, 114, 8199-8256.

14

Ovoshchnikov, D. S. ; Donoeva, B. G. ; Williamson, B. E. ; Golovko, V. B. Tuning the selectivity of a supported gold catalyst in solvent- and radical initiator-free aerobic oxidation of cyclohexene. Catal. Sci. Technol. 2014, 4, 752-757.

15

Bhunia, S. ; Jana, S. ; Saha, D. ; Dutta, B. ; Koner, S. Catalytic olefin epoxidation over cobalt(Ⅱ)-containing mesoporous silica by molecular oxygen in dimethylformamide medium. Catal. Sci. Technol. 2014, 4, 1820-1828.

16

Ottenbacher, R. V. ; Samsonenko, D. G. ; Talsi, E. P. ; Bryliakov, K. P. Highly enantioselective bioinspired epoxidation of electron-deficient olefins with H2O2 on aminopyridine Mn catalysts. ACS Catal. 2014, 4, 1599-1606.

17

Crites, C. -O. L. ; Hallet-Tapley, G. L. ; González-Béjar, M. ; Netto-Ferreira, J. C. ; Scaiano, J. C. Epoxidation of stilbene using supported gold nanoparticles: Cumyl peroxyl radical activation at the gold nanoparticle surface. Chem. Commun. 2014, 50, 2289-2291.

18

Chandra, P. ; Doke, D. S. ; Umbarkar, S. B. ; Biradar, A. V. One-pot synthesis of ultrasmall MoO3 nanoparticles supported on SiO2, TiO2, and ZrO2 nanospheres: An efficient epoxidation catalyst. J. Mater. Chem. A 2014, 2, 19060-19066.

19

Yan, W. J. ; Ramanathan, A. ; Ghanta, M. ; Subramaniam, B. Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten- or niobium-incorporated mesoporous silicate (KIT-6). Catal. Sci. Technol. 2014, 4, 4433-4439.

20

Markovits, I. I. E. ; Anthofer, M. H. ; Kolding, H. ; Cokoja, M. ; Pothig, A. ; Raba, A. ; Herrmann, W. A. ; Fehrmann, R. ; Kühn, F. E. Efficient epoxidation of propene using molecular catalysts. Catal. Sci. Technol. 2014, 4, 3845-3849.

21

Christopher, P. ; Linic, S. Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc. 2008, 130, 11264- 11265.

22

Zhang, J. Y. ; Xiao, F. -X. ; Xiao, G. C. ; Liu, B. Self- assembly of a Ag nanoparticle-modified and graphene- wrapped TiO2 nanobelt ternary heterostructure: Surface charge tuning toward efficient photocatalysis. Nanoscale 2014, 6, 11293-11302.

23

Shen, Z. G. ; Luo, Y. Q. ; Wang, Q. ; Wang, X. Y. ; Sun, R. C. High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+. ACS Appl. Mater. Interfaces 2014, 6, 16147-16155.

24

Radziuk, D. ; Shchukin, D. ; Möhwald, H. Sonochemical design of engineered gold−silver nanoparticles. J. Phys. Chem. C 2008, 112, 2462-2468.

25

Erwin, W. R. ; Coppola, A. ; Zarick, H. F. ; Arora, P. ; Miller, K. J. ; Bardhan, R. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures. Nanoscale 2014, 6, 12626-12634.

26

Sharma, M. ; Pudasaini, P. R. ; Ruiz-Zepeda, F. ; Vinogradova, E. ; Ayon, A. A. Plasmonic effects of Au/Ag bimetallic multispiked nanoparticles for photovoltaic applications. ACS Appl. Mater. Interfaces 2014, 6, 15472-15479.

27

Fageria, P. ; Gangopadhyay, S. ; Pande, S. Synthesis of ZnO/ Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 2014, 4, 24962-24972.

28

Cheng, F. ; Betts, J. W. ; Kelly, S. M. ; Schaller, J. ; Heinze, T. Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem. 2013, 15, 989-998.

29

Garcia-Reyero, N. ; Kennedy, A. J. ; Escalon, B. L. ; Habib, T. ; Laird, J. G. ; Rawat, A. ; Wiseman, S. ; Hecker, M. ; Denslow, N. ; Steevens, J. A. et al. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ. Sci. Technol. 2014, 48, 4546-4555.

30

Ashraf, S. ; Saif-ur-Rehman. ; Sher, F. ; Khalid, Z. M. ; Mehmood, M. ; Hussain, I. Synthesis of cellulose-metal nanoparticle composites: Development and comparison of different protocols. Cellulose 2014, 21, 395-405.

31

Martin, M. N. ; Allen, A. J. ; MacCuspie, R. I. ; Hackley, V. A. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles. Langmuir 2014, 30, 11442-11452.

32

Tang, B. ; Li, J. L. ; Hou, X. L. ; Afrin, T. ; Sun, L. ; Wang, X. G. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 4556-4563.

33

Ai, L. H. ; Yue, H. T. ; Jiang, J. Environmentally friendly light-driven synthesis of Ag nanoparticles in situ grown on magnetically separable biohydrogels as highly active and recyclable catalysts for 4-nitrophenol reduction. J. Mater. Chem. 2012, 22, 23447-23453.

34

Cai, J. ; Kimura, S. ; Wada, M. ; Kuga, S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 2009, 10, 87-94.

35

Dong, B. H. ; Hinestroza, J. P. Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and in situ synthesis. ACS Appl. Mater. Interfaces 2009, 1, 797-803.

36

Fang, Y. ; Duan, B. ; Lu, A. ; Liu, M. L. ; Liu, H. L. ; Xu, X. J. ; Zhang, L. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 2015, 16, 1410-1417.

37

Duan, B. ; Chang, C. Y. ; Ding, B. B. ; Cai, J. ; Xu, M. ; Feng, S. C. ; Ren, J. Z. ; Shi, X. W. ; Du, Y. M. ; Zhang, L. High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. J. Mater. Chem. A 2013, 1, 1867-1874.

38

Chang, C. Y. ; Chen, S. ; Zhang, L. Novel hydrogels prepared via direct dissolution of chitin at low temperature: Structure and biocompatibility. J. Mater. Chem. 2011, 21, 3865-3871.

39

Ding, B. B. ; Cai, J. ; Huang, J. C. ; Zhang, L. ; Chen, Y. ; Shi, X. W. ; Du, Y. M. ; Kuga, S. Facile preparation of robust and biocompatible chitin aerogels. J. Mater. Chem. 2012, 22, 5801-5809.

40

Duan, B. ; Liu, F. ; He, M. ; Zhang, L. Ag-Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem. 2014, 16, 2835-2845.

41

Tang, H. ; Chang, C. Y. ; Zhang, L. Efficient adsorption of Hg2+ ions on chitin/cellulose composite membranes prepared via environmentally friendly pathway. Chem. Eng. J. 2011, 173, 689-697.

42

Duan, B. ; Zheng, X. ; Xia, Z. X. ; Fan, X. L. ; Guo, L. ; Liu, J. F. ; Wang, Y. F. ; Ye, Q. F. ; Zhang, L. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew. Chem., Int. Ed. 2015, 54, 5152-5156.

43

Zhang, D. -H. ; Li, H. -B. ; Li, G. -D. ; Chen, J. -S. Magnetically recyclable Ag-ferrite catalysts: General synthesis and support effects in the epoxidation of styrene. Dalton Trans. 2009, 10527-10533.

44

Duan, J. Q. ; He, X. M. ; Zhang, L. Magnetic cellulose-TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem. Commun. 2015, 51, 338-341.

45

Ding, F. Y. ; Shi, X. W. ; Jiang, Z. W. ; Liu, L. ; Cai, J. ; Li, Z. Y. ; Chen, S. ; Du, Y. M. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J. Mater. Chem. B 2013, 1, 1729-1737.

46

Ifuku, S. ; Morooka, S. ; Morimoto, M. ; Saimoto, H. Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 2010, 11, 1326-1330.

47

Xiong, R. ; Lu, C. H. ; Wang, Y. R. ; Zhou, Z. H. ; Zhang, X. X. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J. Mater. Chem. A 2013, 1, 14910-14918.

48

Zhang, L. ; Shen, Y. H. ; Xie, A. J. ; Li, S. K. ; Li, Y. M. Layer-by-layer assembly of chitosan/tungstosilicate acid-Ag nanocomplex with electrocatalytic properties. J. Mater. Chem. 2009, 19, 1884-1893.

49

Ferraria, A. M. ; Boufi, S. ; Battaglini, N. ; Botelho do Rego, A. M. ; ReiVilar, M. Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 2010, 26, 1996- 2001.

50

Kangwansupamonkon, W. ; Tiewtrakoonwat, W. ; Supaphol, P. ; Kiatkamjornwong, S. Surface modification of electrospun chitosan nanofibrous mats for antibacterial activity. J. Appl. Poly. Sci. 2014, 131, 40981.

51

Pradal, C. ; Kithva, P. ; Martin, D. ; Trau, M. ; Grondahl, L. Improvement of the wet tensile properties of nanostructured hydroxyapatite and chitosan biocomposite films through hydrophobic modification. J. Mater. Chem. 2011, 21, 2330- 2337.

52

Roy, P. S. ; Samanta, A. ; Mukherjee, M. ; Roy, B. ; Mukherjee, A. Designing novel pH-induced chitosan-gum odina complex coacervates for colon targeting. Ind. Eng. Chem. Res. 2013, 52, 15728-15745.

53

Zuo, X. J. Preparation and evaluation of novel thiourea/ chitosan composite beads for copper(Ⅱ) removal in aqueous solutions. Ind. Eng. Chem. Res. 2014, 53, 1249-1255.

54

Jiang, W. ; Wang, W. F. ; Pan, B. C. ; Zhang, Q. X. ; Zhang, W. M. ; Lv, L. Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl. Mater. Interfaces 2014, 6, 3421-3426.

55

Bratskaya, S. ; Marinin, D. ; Simon, F. ; Synytska, A. ; Zschoche, S. ; Busscher, H. J. ; Jager, D. ; van der Mei, H. C. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/κ-carrageenan multilayers. Biomacromolecules 2007, 8, 2960-2968.

56

Lundin, A. ; Panas, I. ; Ahlberg, E. Quantum chemical modeling of propene and butene epoxidation with hydrogen peroxide. J. Phys. Chem. A 2009, 113, 282-290.

57

Ghosh, S. ; Acharyya, S. S. ; Tiwari, R. ; Sarkar, B. ; Singha, R. K. ; Pendem, C. ; Ssakt, T. ; Bal, R. Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen. ACS. Catal. 2014, 4, 2169-2174.

Nano Research
Pages 2149-2161
Cite this article:
Guo L, Duan B, Zhang L. Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Research, 2016, 9(7): 2149-2161. https://doi.org/10.1007/s12274-016-1104-z

633

Views

50

Crossref

N/A

Web of Science

53

Scopus

4

CSCD

Altmetrics

Received: 04 February 2016
Revised: 13 April 2016
Accepted: 18 April 2016
Published: 24 May 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return