AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection

Shichao Du1Zhiyu Ren2( )Jun Wu2Wang Xi2Honggang Fu1,2( )
Institute of Theoretical chemistryJilin UniversityChangChun130023China
Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
Show Author Information

Graphical Abstract

Abstract

Highly sensitive, selective, and stable hydrogen peroxide (H2O2) detection using nanozyme-based catalysts are desirable for practical applications. Herein, vertical α-FeOOH nanowires were successfully grown on the surface of carbon fiber paper (CFP) via a low-temperature hydrothermal procedure. The formation of vertical α-FeOOH nanowires is ascribed to the structure-directing role of sodium dodecyl sulfate. The resulting free-standing electrode with one-dimensional (1D) nanowires offers oriented channels for fast charge transfer, excellent electrical contact between the electrocatalyst and the current collector, and good mechanical stability and reproducibility. Thus, it can serve as an efficient electrocatalyst for the reduction and sensitive detection of H2O2. The relation of the oxidation current of H2O2 with the concentration is linear from 0.05 to 0.5 mM with a sensitivity of -0.194 mA/(mM·cm2) and a low detection limit of 18 μM. Furthermore, the portability in the geometric tailor and easy device fabrication allow extending the general applicability of this free-standing electrode to chemical and biological sensors.

Electronic Supplementary Material

Download File(s)
nr-9-8-2260_ESM.pdf (1.5 MB)

References

1

Karakoti, A.; Singh, S.; Dowding, J. M.; Seal, S.; Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422–4432.

2

Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

3

Kim, M. I.; Ye, Y.; Won, B. Y.; Shin, S.; Lee, J.; Park, H. G. A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868–2875.

4

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

5

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

6

Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

7

Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58.

8

Chen, X.; Zhang, J. J.; Xuan, J.; Zhu, J. J. Myoglobin/gold nanoparticles/carbon spheres 3-D architecture for the fabrication of a novel biosensor. Nano Res. 2009, 2, 210–219.

9

Rhee, S. G.; Chang, T. S.; Jeong, W. J.; Kang, D.; Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 2010, 29, 539–549.

10

Wei, D.; Bailey, M. J. A.; Andrew, P.; Ryhänen, T. Electrochemical biosensors at the nanoscale. Lab Chip. 2009, 9, 2123–2131.

11

Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.

12

Yagati, A. K.; Choi, J. W. Protein based electrochemical biosensors for H2O2 detection towards clinical diagnostics. Electroanalysis 2014, 26, 1259–1276.

13

Heli, H.; Pishahang, J. Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: Synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim. Acta 2014, 123, 518–526.

14

Chen, S. H.; Yuan, R.; Chai, Y. Q.; Hu, F. X. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2013, 180, 15–32.

15

Chen, A. C.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438.

16

Wang, J.; Chen, X. J.; Liao, K. M.; Wang, G. H.; Han, M. Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection. Nanoscale Res. Lett. 2015, 10, 311.

17

Aiyar, J.; Berkovits, H. J.; Floyd, R. A.; Wetterhahn, K. E. Reaction of chromium(VI) with hydrogen peroxide in the presence of glutathione: Reactive intermediates and resulting DNA damage. Chem. Res. Toxicol. 1990, 3, 595–603.

18

Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012, 41, 2849–2866.

19

Manea, F.; Houillon, F. B.; Pasquato. L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004, 43, 6165–6169.

20

Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of "naked" gold particles. Angew. Chem., Int. Ed. 2004, 43, 5812–5815.

21

Cui, C. H.; Yu, J. W.; Li, H. H.; Gao, M. R.; Liang, H. W.; Yu, S. H. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd–Au bimetallic nanoparticle tubes. ACS Nano 2011, 5, 4211–4218.

22

Sun, X. L.; Guo, S. J.; Liu, Y.; Sun, S. H. Dumbbell-like PtPd–Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett. 2012, 12, 4859–4863.

23

Liu, J.; Zhang, W.; Zhang, H. L.; Yang, Z. Y.; Li, T. R.; Wang, B. D.; Huo, X.; Wang, R.; Chen, H. T. A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 2013, 49, 4938–4940.

24

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

25

Shi, Y.; Su, P.; Wang, Y. Y.; Yang, Y. Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 2014, 130, 259–264.

26

Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin–graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290.

27

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

28

Zhang, C. M.; Zhu, J. X; Rui, X. H.; Chen, J.; Sim, D.; Shi, W. H.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Synthesis of hexagonal-symmetry α-iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties. CrystEngComm 2012, 14, 147–153.

29

Perez, J. M. Iron oxide nanoparticles: Hidden talent. Nat. Nanotechnol. 2007, 2, 535–536.

30

Chen, P. Z.; Xu, K.; Li, X. L.; Guo, Y. Q.; Zhou, D.; Zhao, J. Y.; Wu, X. J.; Wu, C. Z; Xie, Y. Ultrathin nanosheets of feroxyhyte: A new two-dimensional material with robust ferromagnetic behavior. Chem. Sci. 2014, 5, 2251–2255.

31

Yang, T. Y.; Kang, H. Y.; Jin, K.; Park, S.; Lee, J.; Sim, U.; Jeong, H. Y.; Joo, Y. C.; Nam, K. T. An iron oxide photoanode with hierarchical nanostructure for efficient water oxidation. J. Mater. Chem. A 2014, 2, 2297–2305.

32

Zhang, J.; Gao, W. B.; Dou, M. L.; Wang, F.; Liu, J. Q.; Li, Z. L.; Ji, J. Nanorod–constructed porous Co3O4 nanowires: Highly sensitive sensors for the detection of hydrazine. Analyst 2015, 140, 1686–1692.

33

Xie, J. L.; Guo, C. X.; Li, C. M. Construction of one- dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 2014, 7, 2559–2579.

34

Wang, L.; Su, L.; Chen, H. H.; Yin, T.; Lin, Z. Y.; Lin, X. X.; Yuan, C. W.; Fu, D. G. Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer. Mater. Lett. 2015, 141, 311–314.

35

Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.

36

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

37

Valentini, F.; Cristofanelli, L.; Carbone M.; Palleschi, G. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2–detection. Electrochimi. Acta 2012, 63, 37–46.

38

Zhang, L. H.; Zhai, Y. M.; Gao, N.; Wen, D.; Dong, S. J. Sensing H2O2 with layer-by-layer assembled Fe3O4–PDDA nanocomposite film. Electrochem. Commun. 2008, 10, 1524–1526.

39

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

40

Li, S. S.; Cong, H. -P.; Wang, P.; Yu, S. H. Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity. Nanoscale 2014, 6, 7534–7541.

41

Liu, M. M.; He, S. J.; Chen, W. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale 2014, 6, 11769–11776.

42

Louie, W. M.; Bell, A. T. An Investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

43

Froment, F.; Tourné, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568.

44

Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.

45

Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Adv. Funct. Mater. 2013, 23, 3513–3518.

46

Kannan, P.; Maiyalagan, T.; Marsili, E.; Ghosh, S.; Niedziolka-Jönsson, J.; Jönsson-Niedziolka, M. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing. Nanoscale 2016, 8, 843–855.

47

Lin, C. Y.; Chang, C. T. Iron oxide nanorods array in electrochemical detection of H2O2. Sens. Actuators B 2015, 220, 695–704.

48

Hrbac, J.; Halouzka, V.; Zboril, R.; Papadopoulos, K.; Triantis, T. Carbon electrodes modified by nanoscopic iron(Ⅲ) oxides to assemble chemical sensors for the hydrogen peroxide amperometric detection. Electroanalysis 2007, 19, 1850–1854.

49

Dutta, A. K.; Maji, S. K.; Srivastava, D. N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Peroxidase-like activity and amperometric sensing of hydrogen peroxide by Fe2O3 and Prussian Blue-modified Fe2O3 nanoparticles. J. Mol. Catal. A: Chem. 2012, 360, 71–77.

Nano Research
Pages 2260-2269
Cite this article:
Du S, Ren Z, Wu J, et al. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Research, 2016, 9(8): 2260-2269. https://doi.org/10.1007/s12274-016-1113-y

878

Views

41

Crossref

N/A

Web of Science

41

Scopus

0

CSCD

Altmetrics

Received: 07 January 2016
Revised: 10 April 2016
Accepted: 21 April 2016
Published: 24 May 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return