AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance

Yawen Zhan1,2Shanshan Zeng1,2Haidong Bian1,2,3Zhe Li1,2Zhengtao Xu3Jian Lu4,5( )Yang Yang Li1,2,6( )
Center of Super-Diamond and Advanced Films (COSDAF)City University of Hong Kong, 83 Tat Chee Avenue, KowloonHong KongChina
Department of Physics and Materials ScienceCity University of Hong Kong, 83 Tat Chee Avenue, KowloonHong KongChina
Department of Chemistry and BiologyCity University of Hong Kong, 83 Tat Chee Avenue, KowloonHong KongChina
Department of Mechanical and Biomedical EngineeringCity University of Hong Kong, 83 Tat Chee Avenue, KowloonHong KongChina
Centre for Advanced Structural MaterialsCity University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan DistrictShenzhen518000China
City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan DistrictShenzhen518000China
Show Author Information

Graphical Abstract

Abstract

Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low surface area of conventional metal foams largely limits their performance in applications such as charge storage. Here, we present a convenient electrochemical method for addressing this problem using Cu foams as an example. High surface area Cu foams are fabricated in a one-pot one-step manner by repetitive electrodeposition and dealloying treatments. The obtained Cu foams exhibit greatly improved performance for different applications like surface enhanced Raman spectroscopy (SERS) substrates and 3-D bulk supercapacitor electrodes.

Electronic Supplementary Material

Download File(s)
nr-9-8-2364_ESM.pdf (1.2 MB)

References

1

Zhang, J. T.; Li, C. M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 7016-7031.

2

Odabaee, M.; Hooman, K. Metal foam heat exchangers for heat transfer augmentation from a tube bank. Appl. Therm. Eng. 2012, 36, 456-463.

3

Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962-965.

4

Li, Y. J.; Li, Z. D.; Han, F. S. Air flow resistance and sound absorption behavior of open-celled aluminum foams with spherical cells. Procedia Mater. Sci. 2014, 4, 187-190.

5

Leventis, N.; Sotiriou-Leventis, C.; Mohite, D. P.; Larimore, Z. J.; Mang, J. T.; Churu, G.; Lu, H. B. Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem. Mater. 2011, 23, 2250-2261.

6

Lin, M. -C.; Gong, M.; Lu, B.; Wu, Y. P.; Wang, D. -Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. -J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324-328.

7

Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Zhang, X. G.; Shen, L. F.; Lou, X. W. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 2012, 22, 4592-4597.

8

Arisetty, S.; Prasad, A. K.; Advani, S. G. Metal foams as flow field and gas diffusion layer in direct methanol fuel cells. J. Power Sources 2007, 165, 49-57.

9

Xie, J.; Yang, X. G.; Han, B. H.; Shao-Horn, Y.; Wang, D. W. Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities. ACS Nano 2013, 7, 6337-6345.

10

Shin, H. -C.; Liu, M. L. Copper foam structures with highly porous nanostructured walls. Chem. Mater. 2004, 16, 5460-5464.

11

Tappan, B. C.; Steiner, S. A.; Luther, E. P. Nanoporous metal foams. Angew. Chem., Int. Ed. 2010, 49, 4544-4565.

12

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163-3168.

13

Wang, H. L.; Gao, Q. M.; Jiang, L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011, 7, 2454-2459.

14

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

15

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433-3438.

16

Zheng, X. Y.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A. et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344, 1373-1377.

17

Shin, H. C.; Dong, J.; Liu, M. Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater. 2003, 15, 1610-1614.

18

Kim, J. -H.; Kim, R. -H.; Kwon, H. -S. Preparation of copper foam with 3-dimensionally interconnected spherical pore network by electrodeposition. Electrochem. Commun. 2008, 10, 1148-1151.

19

Zhu, Y.; Li, Z.; Chen, M.; Cooper, H. M.; Lu, G. Q.; Xu, Z. P. Synthesis of robust sandwich-like SiO2@CdTe@SiO2 fluorescent nanoparticles for cellular imaging. Chem. Mater. 2012, 24, 421-423.

20

Zhang, Q. B.; Xu, D. G.; Hung, T. F.; Zhang, K. L. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Nanotechnology 2013, 24, 065602.

21

Guan, C.; Liu, J. P.; Cheng, C. W.; Li, H. X.; Li, X. L.; Zhou, W. W.; Zhang, H.; Fan, H. J. Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 2011, 4, 4496-4499.

22

Dai, H. -B.; Liang, Y.; Wang, P.; Cheng, H. -M. Amorphous cobalt-boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution. J. Power Sources 2008, 177, 17-23.

23

Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T. Layered MnO2 nanobelts: Hydrothermal synthesis and electrochemical measurements. Adv. Mater. 2004, 16, 918-922.

24

Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 2012, 24, 4569-4573.

25

Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368-3397.

26

Liu, K. S.; Jiang, L. Metallic surfaces with special wettability. Nanoscale 2011, 3, 825-838.

27

Biener, J.; Nyce, G. W.; Hodge, A. M.; Biener, M. M.; Hamza, A. V.; Maier, S. A. Nanoporous plasmonic metamaterials. Adv. Mater. 2008, 20, 1211-1217.

28

Jiang, X. C.; Herricks, T.; Xia, Y. N. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333-1338.

29

Li, Y. H.; Chang, S.; Liu, X. L.; Huang, J. C.; Yin, J. L.; Wang, G. L.; Cao, D. X. Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim. Acta 2012, 85, 393-398.

30

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

Nano Research
Pages 2364-2371
Cite this article:
Zhan Y, Zeng S, Bian H, et al. Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance. Nano Research, 2016, 9(8): 2364-2371. https://doi.org/10.1007/s12274-016-1123-9

762

Views

13

Crossref

N/A

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 27 January 2016
Revised: 21 April 2016
Accepted: 25 April 2016
Published: 31 May 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return