AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Thermal conduction across the one-dimensional interface between a MoS2 monolayer and metal electrode

Xiangjun LiuGang Zhang( )Yong-Wei Zhang
Institute of High Performance Computing, A*STARSingapore138632Singapore
Show Author Information

Graphical Abstract

Abstract

The thermal conductance across the one-dimensional (1D) interface between a MoS2 monolayer and Au electrode (edge-contact) has been investigated using molecular dynamics simulations. Although the thermal conductivity of monolayer MoS2 is 2–3 orders of magnitude lower than that of graphene, the covalent bonds formed at the interface enable interfacial thermal conductance (ITC) that is comparable to that of a graphene–metal interface. Each covalent bond at the interface serves as an independent channel for thermal conduction, allowing ITC to be tuned linearly by changing the interfacial bond density (controlling S vacancies). In addition, different Au surfaces form different bonding configurations, causing large ITC variations. Interestingly, the S vacancies in the central region of MoS2 only slightly affect the ITC, which can be explained by a mismatch of the phonon vibration spectra. Further, at room temperature, ITC is primarily dominated by phonon transport, and electron–phonon coupling plays a negligible role. These results not only shed light on the phonon transport mechanisms across 1D metal–MoS2 interfaces, but also provide guidelines for the design and optimization of such interfaces for thermal management in MoS2-based electronic devices.

References

1

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

2

Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.

3

Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. -C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.

4

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. -C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.

5

Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.

6

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. -Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

7

Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. -Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230-5234.

8

Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

9

Cai, Y. Q.; Zhang, G.; Zhang, Y. -W. Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J. Am. Chem. Soc. 2014, 136, 6269-6275.

10

Kang, K.; Xie, S.; Huang, L. J.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C. -J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.

11

Popov, I.; Seifert, G.; Tomanek, D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.

12

Liu, D.; Guo, Y.; Fang, L.; Robertson, J. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl. Phys. Lett. 2013, 103, 183113.

13

Guo, Y.; Liu, D.; Robertson, J. Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts. Appl. Phys. Lett. 2015, 106, 173106.

14

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.

15

Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147-169.

16

Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. -F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042-9047.

17

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Hight Walker, A. R.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986-993.

18

Taube, A.; Judek, J.; Łapińska, A.; Zdrojek, M. Temperature-dependent thermal properties of supported MoS2 monolayers. ACS Appl. Mater. Interfaces 2015, 7, 5061-5065.

19

Liu, X. J.; Zhang, G.; Pei, Q. -X.; Zhang, Y. -W. Phonon Thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 2013, 103, 133113.

20

Li, W.; Carrete, J.; Mingo, N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 2013, 103, 253103.

21

Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y. -W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.

22

Jiang, J. -W.; Zhuang, X. Y.; Rabczuk, T. Orientation dependent thermal conductance in single-layer MoS2. Sci. Rep. 2013, 3, 2209.

23

Wei, X. L.; Wang, Y. C.; Shen, Y. L.; Xie, G. F.; Xiao, H. P.; Zhong, J. X.; Zhang, G. Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene. Appl. Phys. Lett. 2014, 105, 103902.

24

Liu, T. -H.; Chen, Y. -C.; Pao, C. -W.; Chang, C. -C. Anisotropic thermal conductivity of MoS2 nanoribbons: Chirality and edge effects. Appl. Phys. Lett. 2014, 104, 201909.

25

Wu, X. F.; Yang, N.; Luo, T. F. Unusual isotope effect on thermal transport of single layer molybdenum disulphide. Appl. Phys. Lett. 2015, 107, 191907.

26

Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction. Appl. Phys. Lett. 2014, 104, 081908.

27

Chen, J.; Walther, J. H.; Koumoutsakos, P. Covalently bonded graphene-carbon nanotube hybrid for high-performance thermal interfaces. Adv. Funct. Mater. 2015, 25, 7539-7545.

28

Liu, X. J.; Zhang, G.; Zhang, Y. -W. Graphene-based thermal modulator. Nano Res. 2015, 8, 2755-2762.

29

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.

30

Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614-617.

31

Liu, W.; Kang, J. H.; Cao, W.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, 2013, pp 19.4.1-19.4.4.

32

Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

33

Mao, R.; Kong, B. D.; Kim, K. W. Thermal transport properties of metal/MoS2 interfaces from first principles. J. Appl. Phys. 2014, 116, 034302.

34

Liang, T.; Phillpot, S. R.; Sinnott, S. B. Parametrization of a reactive many-body potential for Mo-S systems. Phys. Rev. B 2009, 79, 245110.

35

Stewart, J. A.; Spearot, D. E. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Model. Simul. Mater. Sci. Eng. 2013, 21, 045003.

36

Tang, D. -M; Kvashnin, D. G.; Najmaei, S.; Bando, Y.; Kimoto, K.; Koskinen, P.; Ajayan, P. M.; Yakobson, B. I.; Sorokin, P. B.; Lou, J. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 2014, 5, 3631.

37

Dang, K. Q.; Spearot, D. E. Effect of point and grain boundary defects on the mechanical behavior of monolayer MoS2 under tension via atomistic simulations. J. Appl. Phys. 2014, 116, 013508.

38

Wang, X. N.; Tabarraei, A.; Spearot, D. E. Fracture mechanics of monolayer molybdenum disulfide. Nanotechnology 2015, 26, 175703.

39

Foiles, S. M.; Baskes, M. I.; Daw, M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983-7991.

40

Liu, K. S. S.; Yong, C. W.; Garrison, B. J.; Vickerman, J. C. Molecular dynamics simulations of particle bombardment induced desorption processes: Alkanethiolates on Au(111). J. Phys. Chem. B 1999, 103, 3195-3205.

41

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.

42

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.

43

Li, W. F.; Guo, M.; Zhang, G.; Zhang, Y. -W. Edge-specific Au/Ag functionalization-induced conductive paths in armchair MoS2 nanoribbons. Chem. Mater. 2014, 26, 5625-5631.

44

Landry, E. S.; McGaughey, A. J. H. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 2009, 80, 165304.

45

Balasubramanian, G.; Puri, I. K. Heat conduction across a solid-solid interface: Understanding nanoscale interfacial effects on thermal resistance. Appl. Phys. Lett. 2011, 99, 013116.

46

Chen, J.; Zhang, G.; Li, B. W. Thermal contact resistance across nanoscale silicon dioxide and silicon interface. J. Appl. Phys. 2012, 112, 064319.

47

Alexeev, D.; Chen, J.; Walther, J. H.; Giapis, K. P.; Angelikopoulos, P.; Koumoutsakos, P. Kapitza resistance between few-layer graphene and water: Liquid layering effects. Nano Lett. 2015, 15, 5744-5749.

48

da Cruz, C. A.; Chantrenne, P.; Kleber, X. Molecular dynamics simulations and Kapitza conductance prediction of Si/Au systems using the new full 2NN MEAM Si/Au cross-potential. J. Heat Transfer 2012, 134, 062402.

49

Yang, N.; Luo, T. F.; Esfarjani, K.; Henry, A.; Tian, Z. T.; Shiomi, J.; Chalopin, Y.; Li, B. W.; Chen, G. Thermal interface conductance between aluminum and silicon by molecular dynamics simulations. J. Comput. Theor. Nanosci. 2015, 12, 168-174.

50

Wang, Y.; Ruan, X. L.; Roy, A. K. Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Phys. Rev. B 2012, 85, 205311.

51

Mao, R.; Kong, B. D.; Gong, C.; Xu, S.; Jayasekera, T.; Cho, K.; Kim, K. W. First-principles calculation of thermal transport in metal/graphene systems. Phys. Rev. B 2013, 87, 165410.

52

Hu, L.; Desai, T.; Keblinski, P. Determination of interfacial thermal resistance at the nanoscale. Phys. Rev. B 2011, 83, 195423.

53

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. -C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.

54

Xie, G. F.; Shen, Y. L.; Wei, X. L.; Yang, L. W.; Xiao, H. P.; Zhong, J. X.; Zhang, G. A bond-order theory on the phonon scattering by vacancies in two-dimensional materials. Sci. Rep. 2014, 4, 5085.

55

Liu, X. J.; Zhang, G.; Zhang, Y. -W. Thermal conduction across graphene cross-linkers. J. Phys. Chem. C 2014, 118, 12541-12547.

56

Ding, Z. W.; Pei, Q. -X.; Jiang, J. -W.; Zhang, Y. -W. Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering. J. Phys. Chem. C 2015, 119, 16358-16365.

57

Liu, X. J.; Zhang, G.; Zhang, Y. -W. Surface-engineered nanoscale diamond films enable remarkable enhancement in thermal conductivity and anisotropy. Carbon 2015, 94, 760-767.

58

Sergeev, A. V. Electronic Kapitza conductance due to inelastic electron-boundary scattering. Phys. Rev. B 1998, 58, R10199.

59

Kittel, C. Introduction to Solid State Physics, 7th ed.; Wiley: New York, 1996.

60

Zhang, G.; Zhang, Y. -W. Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 2015, 91, 382-398.

Nano Research
Pages 2372-2383
Cite this article:
Liu X, Zhang G, Zhang Y-W. Thermal conduction across the one-dimensional interface between a MoS2 monolayer and metal electrode. Nano Research, 2016, 9(8): 2372-2383. https://doi.org/10.1007/s12274-016-1124-8

736

Views

36

Crossref

N/A

Web of Science

33

Scopus

1

CSCD

Altmetrics

Received: 01 February 2016
Revised: 22 April 2016
Accepted: 25 April 2016
Published: 02 June 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return