AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer

Linlin Zhang1,§Yang Liu2,5,§Gan Liu3Duo Xu2Sheng Liang3Xinyuan Zhu4( )Yunfeng Lu2( )Hui Wang1( )
Department of Nuclear MedicineXinhua Hospital Affiliated to Shanghai Jiao Tong UniversityShanghai Jiao Tong UniversityShanghai200092China
Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
The Shenzhen Key Laboratory of Gene and Antibody TherapyCenter for Biotechnology and Biomedicine and Division of Life and Health SciencesTsinghua UniversityShenzhen518055China
School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
Key Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryNankai UniversityTianjin300071China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Short in vivo circulation is a major hindrance to the widespread adoption of protein therapeutics. Protein nanocapsules generated by encapsulating proteins with a thin layer of phosphorylcholine-based polymer via a two-step encapsulation process exhibited significantly prolonged plasma half-life. Furthermore, by constructing nanocapsules with similar sizes but different surface charges and chemistry, we demonstrated a generic strategy for prolonging the plasma half-life of therapeutic proteins. In an in vitro experiment, four types of bovine serum albumin (BSA) nanocapsules were incubated with fetal bovine serum (FBS) in phosphate buffer saline (PBS); the cell uptake by HeLa cells was monitored to systematically evaluate the characteristics of the surface chemistry during circulation. Single positron emission tomography–computed tomography (SPECT) was employed to allow real-time observation of the BSA nanoparticle distribution in vivo, as well as quantification of the plasma concentration after intravenous administration. This study offers a practical method for translating a broad range of proteins for clinical use.

Electronic Supplementary Material

Download File(s)
nr-9-8-2424_ESM.pdf (1.1 MB)

References

1

Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

2

Arora, R.; Sawney, S; Saluja, D. Potential therapeutic approaches for the treatment of acute myeloid leukemia with AML1-ETO translocation. Curr. Cancer Drug Targets 2016, 16, 215–225.

3

Krejsa, C.; Rogge, M.; Sadee, W. Protein therapeutics: New applications for pharmacogenetics. Nat. Rev. Drug Discov. 2006, 5, 507–521.

4

Vaishya, R.; Khurana, V.; Patel, S.; Mitra, A. K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv. 2015, 12, 415–440.

5

Baker, M.; Reynolds, H. M.; Lumicisi, B.; Bryson, C. J. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself 2010, 1, 314–322.

6

Manning, M. C.; Chou, D. K.; Murphy, B. M.; Payne, R. W.; Katayama, D. S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544–575.

7

Morachis, J. M.; Mahmoud, E. A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev. 2012, 64, 505–519.

8

Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

9

Jones, S. W.; Roberts, R. A.; Robbins, G. R.; Perry, J. L.; Kai, M. P.; Chen, K.; Bo, T.; Napier, M. E. Ting, J. P. Y.; DeSimone, J. M. et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J. Clin. Invest. 2013, 123, 3061–3073.

10

Ishihara, T.; Takeda, M.; Sakamoto, H.; Kimoto, A.; Kobayashi, C.; Takasaki, N.; Yuki, K.; Tanaka, K. I.; Takenaga, M.; Igarashi, R. Accelerated blood clearance phenomenon upon repeated injection of PEG-modified PLA-nanoparticles. Pharm. Res. 2009, 26, 2270–2279.

11

Armstrong, J. K.; Hempel, G.; Koling, S.; Chan, L. S.; Fisher, T.; Meiselman, H. J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007, 110, 103–111.

12

Robinson, K. J.; Coffey, J. W.; Muller, D. A.; Young, P. R.; Kendall, M. A. F.; Thurech, K. J.; Grøndahl, L.; Corrie, S. R. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue. Biointerphases 2015, 10, 04A305.

13

Geagea, R.; Aubert, P. H.; Banet, P.; Sanson, N. Signal enhancement of electrochemical biosensors via direct electrochemical oxidation of silver nanoparticle labels coated with zwitterionic polymers. Chem. Commun. 2015, 51, 402–405.

14

Zhang, L.; Cao, Z. Q.; Bai, T.; Carr, L.; Ella-Menye, J. R.; Irvin, C.; Ratner, B. D.; Jiang, S. Y. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 2013, 31, 553–556.

15

Champion, J. A.; Katare, Y. K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control Release 2007, 121, 3–9.

16

Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S. D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control Release 2013, 172, 782–794.

17

Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

18

Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534–546.

19

Yan, M.; Du, J. J.; Gu, Z; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 2010, 5, 48–53.

20

Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 2013, 8, 187–192.

21

Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39, 323–330.

22

Yohannes, G.; Wiedmer, S. K.; Elomaa, M.; Jussila, M.; Aseyev, V.; Riekkola, M. L. Thermal aggregation of bovine serum albumin studied by asymmetrical flow field-flow fractionation. Anal. Chim. Acta 2010, 675, 191–198.

23

Li, C. Y.; Zhang, D. R.; Guo, Y. Y.; Guo, H. J.; Li, T. T.; Hao, L. L.; Zheng, D. D.; Liu, G. P.; Zhang, Q. Galactosylated bovine serum albumin nanoparticles for parenteral delivery of oridonin: Tissue distribution and pharmacokinetic studies. J. Microencapsul. 2014, 31, 573–578.

24

Dancey, J. E.; Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 2006, 5, 649–659.

25

Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 1988, 57, 321–347.

26

Talaei, F.; Azhdarzadeh, M.; Hashemi, N. H.; Moosavi, M.; Foroumadi, A.; Dinarvand, R.; Atyabi, F. Core shell methyl methacrylate chitosan nanoparticles: In vitro mucoadhesion and complement activation. Daru 2011, 19, 257–265.

27

Hirn, S.; Semmler-Behnke, M.; Schleh, C.; Wenk, A.; Lipka, J.; Schäffler, M.; Takenaka, S.; Müller, W.; Schmid, G.; Simon, U. et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur. J. Pharm. Biopharm. 2011, 77, 407–416.

28

Ito, K.; Hamamichi, S.; Asano, M.; Hori, Y.; Matsui, J.; Iwata, M.; Funahashi, Y.; Umeda, I. O.; Fujii, H. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci. 2016, 107, 60–67.

Nano Research
Pages 2424-2432
Cite this article:
Zhang L, Liu Y, Liu G, et al. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Research, 2016, 9(8): 2424-2432. https://doi.org/10.1007/s12274-016-1128-4

738

Views

49

Crossref

N/A

Web of Science

54

Scopus

0

CSCD

Altmetrics

Received: 24 February 2016
Revised: 27 April 2016
Accepted: 29 April 2016
Published: 31 May 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return