Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The sensitive and on-site detection of inorganic explosives has raised serious concerns regarding public safety. However, high stability and non-volatility features currently limit their rapid on-site detection. Surface-enhanced Raman spectroscopy (SERS) is emerging as a powerful technique for the trace-level detection of different molecules. Plasmonic Ag nanowires were produced by a hydrothermal synthesis method using polyvinylpyrrolidone (PVP) as a negatively charged stabilizer. Here, we report a rapid detection method for inorganic explosives based on a simple surface swab with a positively charged diethyldithiocarbamate-modified Ag nanowire membrane coupled with SERS. This membrane, serving as an excellent SERS substrate with high uniformity, stability, and reusability, can capture both typical oxidizers in inorganic explosives and organic nitro-explosives, via electrostatic interaction. The detection level of perchlorates (ClO4-), chlorates (ClO3-), nitrates (NO3-), picric acid, and 2, 4-dinitrophenol is as high as 2.0, 1.7, 0.1, 45.8, and 36.6 ng, respectively. In addition, simulated typical inorganic explosives such as black powders, firecrackers, and match heads could also be detected. We believe that this membrane represents an attractive alternative for rapid on-site detection of inorganic explosives with high efficiency.
Salinas, Y.; Martínez-Máñez, R.; Marcos, M. D.; Sancenón, F.; Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261-1296.
Hakonen, A.; Andersson, P. O.; Schmidt, M. S.; Rindzevicius, T.; Käll, M. Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Anal. Chim. Acta 2015, 893, 1-13.
Bhattacharjee, Y. Combating terrorism: New efforts to detect explosives require advances on many fronts. Science 2008, 320, 1416-1417.
Pushkarsky, M. B.; Dunayevskiy, I. G.; Prasanna, M.; Tsekoun, A. G.; Go, R.; Patel, C. K. N. High-sensitivity detection of TNT. Proc. Natl. Acad. Sci. USA 2006, 103, 19630-19634.
Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal–organic framework. Angew. Chem., Int. Ed. 2013, 52, 2881-2885.
Geng, Y.; Ali, M. A.; Clulow, A. J.; Fan, S. Q.; Burn, P. L.; Gentle, I. R.; Meredith, P.; Shaw, P. E. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. Nat. Commun. 2015, 6, 8240.
Zhang, K.; Zhou, H. B.; Mei, Q. S.; Wang, S. H.; Guan, G. J.; Liu, R. Y.; Zhang, J.; Zhang, Z. P. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc. 2011, 133, 8424-8427.
Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806-13812.
Wang, J. P.; Yang, L.; Liu, B. H.; Jiang, H. H.; Liu, R. Y.; Yang, J. W.; Han, G. M.; Mei, Q. S.; Zhang, Z. P. Inkjet- printed silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal. Chem. 2014, 86, 3338-3345.
Lichtenstein, A.; Havivi, E.; Shacham, R.; Hahamy, E.; Leibovich, R.; Pevzner, A.; Krivitsky, V.; Davivi, G.; Presman, I.; Elnathan, R. et al. Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays. Nat. Commun. 2014, 5, 4195.
Kolla, P. The application of analytical methods to the detection of hidden explosives and explosive devices. Angew. Chem., Int. Ed. 1997, 36, 800-811.
Blanco, G. A.; Nai, Y. H.; Hilder, E. F.; Shellie, R. A.; Dicinoski, G. W.; Haddad, P. R.; Breadmore, M. C. Identification of inorganic improvised explosive devices using sequential injection capillary electrophoresis and contactless conductivity detection. Anal. Chem. 2011, 83, 9068-9075.
Barron, L.; Gilchrist, E. Ion chromatography-mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis. Anal. Chim. Acta 2014, 806, 27-54.
Flanigan, P. M.; Brady, J. J.; Judge, E. J.; Levis, R. J. Determination of inorganic improvised explosive device signatures using laser electrospray mass spectrometry detection with offline classification. Anal. Chem. 2011, 83, 7115-7122.
Tam, M.; Hill, H. H., Jr. Secondary electrospray ionization- ion mobility spectrometry for explosive vapor detection. Anal. Chem. 2004, 76, 2741-2747.
Marshall, A. The nature of explosives. Sci. Am. 1916, 82, 230-231.
Moretti, J. D.; Sabatini, J. J.; Chen, G. Periodate salts as pyrotechnic oxidizers: Development of barium- and perchlorate-free incendiary formulations. Angew. Chem., Int. Ed. 2012, 51, 6981-6983.
Peng, L. Y.; Hua, L.; Wang, W. G.; Zhou, Q. H.; Li, H. Y. On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization. Sci. Rep. 2014, 4, 6631.
Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and rna detection. Science 2002, 297, 1536-1540.
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166.
Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Res. 2014, 7, 1177-1187.
Li, D. W.; Qu, L. L.; Zhai, W. L.; Xue, J. Q.; Fossey, J. S.; Long, Y. T. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 2011, 45, 4046-4052.
Hargreaves, M. D.; Page, K.; Munshi, T.; Tomsett, R.; Lynch, G.; Edwards, H. G. M. Analysis of seized drugs using portable Raman spectroscopy in an airport environment—A proof of principle study. J. Raman Spectrosc. 2008, 39, 873–880.
Zhang, X. Y.; Young, M. A.; Lyandres, O.; Van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005, 127, 4484–4489.
Golightly, R. S.; Doering, W. E.; Natan, M. J. Surface- enhanced Raman spectroscopy and homeland security: A perfect match? ACS Nano 2009, 3, 2859-2869.
Halvorson, R. A.; Vikesland, P. J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 2010, 44, 7749-7755.
Pallaoro, A.; Braun, G. B.; Moskovits, M. Biotags based on surface-enhanced Raman can be as bright as fluorescence tags. Nano Lett. 2015, 15, 6745-6750.
Zhou, Q.; Yang, Y.; Ni, J.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423-428.
Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241-250.
Aikens, C. M.; Schatz, G. C. TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. J. Phys. Chem. A 2006, 110, 13317-13324.
Chen, H. J.; Kou, X. S.; Yang, Z.; Ni, W. H.; Wang, J. F. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233-5237.
Wei, H.; Zhang, S. P.; Tian, X. R.; Xu, H. X. Highly tunable propagating surface plasmons on supported silver nanowires. Proc. Natl. Acad. Sci. USA 2013, 110, 4494-4499.
Park, S. G.; Mun, C.; Lee, M.; Jeon, T. Y.; Shim, H. S.; Lee, Y. J.; Kwon, J. D.; Kim, C. S.; Kim, D. H. 3D hybrid plasmonic nanomaterials for highly efficient optical absorbers and sensors. Adv. Mater. 2015, 27, 4290-4295.
Sun, Y.; Xia, Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002, 14, 833-837.
Sun, Y. G. Silver nanowires-unique templates for functional nanostructures. Nanoscale 2010, 2, 1626-1642.
Baik, J. M.; Lee, S. J.; Moskovits, M. Polarized surface- enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires. Nano Lett. 2009, 9, 672-676.
Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface- enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229- 1233.
Zhu, S.; Zhang, X. L.; Cui, J. C.; Shi, Y. E.; Jiang, X. H.; Liu, Z.; Zhan, J. H. Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer. Analyst 2015, 140, 2815-2822.
Soto, C. A. T.; Costa, A. C., Jr.; Versiane, O.; Lemma, T.; Machado, N. C. F.; Mondragón, M. A.; Martin, A. A. Surface enhanced Raman scattering, natural bond orbitals and mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium(Ⅱ) complex, [Cd(DDTC)2]. Spectrochim. Acta A 2015, 146, 192-203.
Turner, M.; Vaughan, O. P. H.; Kyriakou, G.; Watson, D. J.; Scherer, L. J.; Davidson, G. J. E.; Sanders, J. K. M.; Lambert, R. M. Deprotection, tethering, and activation of a catalytically active metalloporphyrin to a chemically active metal surface: [SAc]4P-Mn(Ⅲ) Cl on Ag(100). J. Am. Chem. Soc. 2009, 131, 1910-1914.
Battocchio, C.; Meneghini, C.; Fratoddi, I.; Venditti, I.; Russo, M. V.; Aquilanti, G.; Maurizio, C.; Bondino, F.; Matassa, R.; Rossi, M. et al. Silver nanoparticles stabilized with thiols: A close look at the local chemistry and chemical structure. J. Phys. Chem. C 2012, 116, 19571-19578.
Song-im, N.; Benson, S.; Lennard, C. Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Sci. Int. 2012, 222, 102-110.
Gong, Z. J.; Du, H. J.; Cheng, F. S.; Wang, C.; Wang, C. C.; Fan, M. K. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931-21937.
Pierre, M. C. S.; Haes, A. J. Purification implications on SERS activity of silica coated gold nanospheres. Anal. Chem. 2012, 84, 7906-7911.
Shi, Y. E.; Li, L. M.; Yang, M.; Jiang, X. H.; Zhao, Q. Q.; Zhan, J. H. A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst 2014, 139, 2525-2530.