AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production

Yongpeng Lei1( )Qi Shi2,4Cheng Han2Bing Wang2Nan Wu2Hong Wang2Yingde Wang2,3( )
College of Basic EducationNational University of Defense TechnologyChangsha410073China
Science and Technology on Advanced Ceramic Fiber and Composites LaboratoryNational University of Defense TechnologyChangsha410073China
College of Materials Science and EngineeringWuhan Textile UniversityWuhan430074China
Luoyang Ship Material Research InstituteLuoyang471039China
Show Author Information

Graphical Abstract

Abstract

Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction. We herein report N-doped graphene (NG) that is exquisitely integrated into highly conductive frameworks, simultaneously providing more active sites and higher conductivity. The NG was in situ grown on carbon fibers derived from silk cocoon (SCCf) using a simple one-step thermal treatment. The resulting product (NG-SCCf), possessing a meso-/macroporous structure with three-dimensional (3D) interconnected networks, exhibits an onset potential that is only 0.1 V less negative than that of Pt/C and shows stability and methanol tolerance superior to those of Pt/C in alkaline media. Moreover, in the absence of Pt as co-catalyst, NG-SCCf shows a photocatalytic H2 production rate of 66.0 μmol·h–1·g–1, 4.4-fold higher than that of SCCf. This outstanding activity is intimately related to the in situ grown NG, hierarchically porous structure, and 3D interconnected networks, which not only introduce more active sites but also enable smooth electron transfer, mass transport, and effective separation of electron-hole pairs. Considering the abundance of the green raw material in combination with easy and low-cost preparation, this work contributes to the development of advanced sustainable catalysts in energy storage/conversion fields, such as electro- and photocatalysis.

Electronic Supplementary Material

Download File(s)
nr-9-8-2498_ESM.pdf (1.4 MB)

References

1

Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Chen, G. H. Boron and nitrogen codoped nanodiamond as an efficient metal-free catalyst for oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 14992–14998.

2

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

3

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

4

Kim, J. Y.; Oh, T. K.; Shin, Y.; Bonnett, J.; Weil, K. S. A novel non-platinum group electrocatalyst for PEM fuel cell application. Int. J. Hydrogen Energ. 2011, 36, 4557–4564.

5

Huang, D. K.; Zhang, B. Y.; Li, S. H.; Wang, M. K.; Shen, Y. Mn3O4/carbon nanotube nanocomposites as electrocatalysts for the oxygen reduction reaction in alkaline solution. ChemElectroChem 2014, 1, 1531–1536.

6

Gao, X. P.; Yang, H. X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci. 2010, 3, 174–189.

7

Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136.

8

Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

9

Zhang, Y.; Zhuang, X. D.; Su, Y. Z.; Zhang, F.; Feng, X. L. Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7742–7746.

10

Yang, S. B.; Feng, X. L.; Wang, X. C.; Müllen, K. Graphene- based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 2011, 50, 5339–5343.

11

Wang, S. Y.; Iyyamperumal, E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

12

Liu, D.; Zhang, X. P.; Sun, Z. C.; You, T. Y. Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale 2013, 5, 9528–9531.

13

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

14

Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249.

15

Zhong, R. S.; Qin, Y. H.; Niu, D. F.; Tian, J. W.; Zhang, X. S.; Zhou, X. G.; Yuan, W. K. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. J. Power Sources 2013, 225, 192–199.

16

Shi, Q.; Lei, Y. P.; Wang, Y. D.; Wang, H. P.; Jiang, L. H.; Yuan, H. L.; Fang, D.; Wang, B.; Wu, N.; Gou, Y. Z. B, N-codoped 3D micro-/mesoporous carbon nanofibers web as efficient metal-free catalysts for oxygen reduction. Curr. Appl. Phys. 2015, 15, 1606–1614.

17

Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

18

Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 4572–4576.

19

Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

20

Liang, J.; Du, X.; Gibson, C.; Du, X. W.; Qiao, S. Z. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 2013, 25, 6226–6231.

21

Raymundo-Piñero, E.; Cadek, M.; Béguin, F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 2009, 19, 1032–1039.

22

Guo, C. Z.; Liao, W. L.; Li, Z. B.; Chen, C. G. Exploration of the catalytically active site structures of animal biomass- modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon 2015, 85, 279–288.

23

Ling, Z.; Wang, Z. Y.; Zhang, M. D.; Yu, C.; Wang, G.; Dong, Y. F.; Liu, S. H.; Wang, Y. W.; Qiu, J. S. Sustainable synthesis: Sustainable synthesis and assembly of biomass- derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 2016, 26, 111–119.

24

Ye, T. N.; Lv, L. B.; Li, X. H.; Xu, M.; Chen, J. S. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6905–6909.

25

Huang, Y. Y.; Wu, P.; Wang, Y. B.; Wang, W. J.; Yuan, D. Q.; Yao, J. N. Ideal N-doped carbon nanoarchitectures evolved from fibrils for highly efficient oxygen reduction. J. Mater. Chem. A 2014, 2, 19765–19770.

26

Gao, S. Y.; Geng, K. R.; Liu, H. Y.; Wei, X. J.; Zhang, M.; Wang, P.; Wang, J. J. Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci. 2015, 8, 221–229.

27

Guo, Z. Y.; Xiao, Z.; Ren, G. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M.; Jiang, L. Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2016, 9, 1244–1255.

28

Chaudhari, K. N.; Song, M. Y.; Yu, J. S. Transforming hair into heteroatom-doped carbon with high surface area. Small 2014, 10, 2625–2636.

29

Peng, S. J.; Jin, G. R.; Li, L. L.; Li, K.; Srinivasan, M.; Ramakrishna, S.; Chen, J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016, 45, 1225–1241.

30

Park, H. W.; Lee, D. U.; Zamani, P.; Seo., M. H.; Nazar, L. F.; Chen, Z. W. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 2014, 10, 192–200.

31

Wang, B.; Wang, Y. D.; Lei, Y. P.; Xie, S.; Wu, N.; Gou, Y. Z.; Han, C.; Shi, Q.; Fang, D. Vertical SnO2 nanosheet@SiC nanofibers with hierarchical architecture for high-performance gas sensors. J. Mater. Chem. C 2016, 4, 295–304.

32

Liang, Y. R.; Wu, D. C.; Fu, R. W. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci. Rep. 2013, 3, 1119.

33

Wu, N.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Han, C.; Gou, Y. Z.; Shi, Q.; Fang, D. Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media. Sci. Rep. 2015, 5, 17396.

34

Shi, Q.; Wang, Y. D.; Wang, Z. M.; Lei, Y. P.; Wang, B.; Wu, N.; Han, C.; Xie, S.; Gou, Y. Z. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016, 9, 317–328.

35

Shi, Q.; Lei, Y. P.; Wang, Y. D.; Wang, Z. M. In-situ preparation and electrocatalytic oxygen reduction performance of N-doped graphene@CNF. J. Inorg. Mater. 2016, 31, 351–357.

36

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

37

Li, L. J.; Manthiram, A. O-and N-doped carbon nanowebs as metal-free catalysts for hybrid Li-air batteries. Adv. Energy Mater. 2014, 4, 1301795.

38

Ma, R. G.; Xia, B. Y.; Zhou, Y.; Li, P. X.; Chen, Y. F.; Liu, Q.; Wang, J. C. Ionic liquid-assisted synthesis of dual- doped graphene as efficient electrocatalysts for oxygen reduction. Carbon 2016, 102, 58–65.

39

Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

40

Lee, J. S.; Park, G. S.; Kim, S. T.; Liu, M. L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C- functionalized melamine foam. Angew. Chem., Int. Ed. 2013, 125, 1060–1064.

41

Kang, Y.; Chu, Z. Y.; Zhang, D. J.; Li, G. Y.; Jiang, Z. H.; Cheng, H. F.; Li, X. D. Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 2013, 61, 200–208.

42

Wang, Y. D.; Han, C.; Zheng, D. C.; Lei, Y. P. Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition. J. Mater. Chem. A 2014, 2, 9607–9612.

43

Raidongia, K.; Nag, A.; Hembram, K. P. S. S.; Waghmare, U. V.; Datta, R.; Rao, C. N. R. BCN: A graphene analogue with remarkable adsorptive properties. Chem. —Eur. J. 2010, 16, 149–157.

44

Ma, Y.; Wang, S.; Chen, Z. H. In situ growth of a carbon interphase between carbon fibres and a polycarbosilane- derived silicon carbide matrix. Carbon 2011, 49, 2869–2872.

45

Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 2012, 51, 11371–11375.

46

Xu, J. X.; Zhao, Y.; Shen, C.; Guan, L. H. Sulfur- and nitrogen-doped, ferrocene-derived mesoporous carbons with efficient electrochemical reduction of oxygen. ACS Appl. Mater. Interface 2013, 5, 12594–12601.

47

Chen, L. H.; Li, X. Y.; Tian, G.; Li, Y.; Tan, H. Y.; van Tendeloo, G.; Zhu, G. S.; Qiu, S. L.; Yang, X. Y.; Su, B. L. Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure. ChemSusChem 2011, 4, 1452–1456.

48

Liang, J.; Zhou, R. F.; Chen, X. M.; Tang, Y. H.; Qiao, S. Z. Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079.

49

Chen, R. X.; Yu, J. G.; Xiao, W. Hierarchically porous MnO2 microspheres with enhanced adsorption performance. J. Mater. Chem. A 2013, 1, 11682–11690.

50

Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/ carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

51

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

52

Liu, Y. X.; Zhang, B. S.; Luo, L. F.; Chen, X. Y.; Wang, Z. L.; Wu, E. L.; Su, D. S.; Huang, W. X. TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction. Angew. Chem., Int. Ed. 2015, 54, 15260–15265.

53

Zhou, Y. X.; Lei, Y. P.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Ultra-thin Cu2S nanosheets: Effective cocatalysts for photocatalytic hydrogen production. Chem. Commun. 2015, 51, 13305–13308.

54

Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.

55

Hao, R.; Jiang, B. J.; Li, M. X.; Xie, Y.; Fu, H. G. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Sci. China Mater. 2015, 58, 363–369.

56

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

57

Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

58

Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209.

59

Li, X.; Wen, J. Q.; Low, J.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.

60

Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10, 577–583.

61

Tan, L. L.; Chai, S. P.; Mohamed, A. R. Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem 2012, 5, 1868–1882.

Nano Research
Pages 2498-2509
Cite this article:
Lei Y, Shi Q, Han C, et al. N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production. Nano Research, 2016, 9(8): 2498-2509. https://doi.org/10.1007/s12274-016-1136-4

708

Views

72

Crossref

N/A

Web of Science

74

Scopus

7

CSCD

Altmetrics

Received: 07 February 2016
Revised: 05 May 2016
Accepted: 08 May 2016
Published: 08 June 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return