AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers

Ren Cai1Dan Yang3Jin Wu3Liqin Zhang1Cuichen Wu1Xigao Chen1Yanyue Wang1Shuo Wan1Fengwei Hou3Qingyu Yan3Weihong Tan1,2( )
Department of Chemistry and Department of Physiology and Functional GenomicsCenter for Research at the Bio/Nano InterfaceShands Cancer CenterUF Genetics InstituteMcKnight Brain InstituteUniversity of FloridaGainesville, FL 32611-7200USA
Molecular Sciences and Biomedicine LaboratoryState Key Laboratory for Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical Engineering and College of BiologyCollaborative Innovation Center for Molecular Engineering and TheranosticsHunan UniversityChangsha410082China
School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
Show Author Information

Graphical Abstract

Abstract

Ultrathin two-dimensional (2D) porous Zn(OH)2 nanosheets (PNs) were fabricated by means of one-dimensional Cu nanowires as backbones. The PNs have thickness of approximately 3.8 nm and pore size of 4–10 nm. To form "smart" porous nanosheets, DNA aptamers were covalently conjugated to the surface of PNs. These ultrathin nanosheets show good biocompatibility, efficient cellular uptake, and promising pH-stimulated drug release.

Electronic Supplementary Material

Download File(s)
nr-9-8-2520_ESM.pdf (3 MB)

References

1

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 6139.

2

Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433–437.

3

Gao, D. Q.; Xu, Q.; Zhang, J.; Yang, Z. L.; Si, M. S.; Yan, Z. J.; Xue, D. S. Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 2014, 6, 2577–2581.

4

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

5

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

6

Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

7

Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

8

Yang, D.; Lu, Z. Y.; Rui, X. H.; Huang, X.; Li, H.; Zhu, J. X.; Zhang, W. Y.; Lam, Y. M.; Hng, H. H.; Zhang, H. et al. Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. Angew. Chem. 2014, 126, 9506–9509.

9

Cai, R.; Chen, J.; Yang, D.; Zhang, Z. Y.; Peng, S. J.; Wu, J.; Zhang, W. Y.; Zhu, C. F.; Lim, T. M.; Zhang, H. et al. Solvothermal-induced conversion of one-dimensional multilayer nanotubes to two-dimensional hydrophilic VOx nanosheets: Synthesis and water treatment application. ACS Appl. Mater. Interfaces 2013, 5, 10389–10394.

10

Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, X. B.; Zhang, X. B.; Tan, W. H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J. Am. Chem. Soc. 2014, 136, 11220–11223.

11

Xiao, J. W.; Yang, S. X.; Wan, L.; Xiao, F.; Wang, S. Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. J. Power Sources 2014, 245, 1027–1034.

12

Yang, Y. Q.; Yang, Y. Q.; Wu, H. X.; Guo, S. W. Control of the formation of rod-like ZnO mesocrystals and their photocatalytic properties. CrystEngComm 2013, 15, 2608–2615.

13

Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9–24.

14

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

15

Hu, X. L.; Masuda, Y.; Ohji, T.; Kato, K. Fabrication of Zn(OH)2/ZnO nanosheet-ZnO nanoarray hybrid structured films by a dissolution-recrystallization route. J. Am. Ceram. Soc. 2010, 93, 881–886.

16

Cai, R.; Chen, J.; Zhu, J. X.; Xu, C.; Zhang, W. Y.; Zhang, C. M.; Shi, W. H.; Tan, H. T.; Yang, D.; Hng, H. H. et al. Synthesis of CuxS/Cu nanotubes and their lithium storage properties. J. Phys. Chem. C 2012, 116, 12468–12474.

17

Shahmiri, M.; Ibrahim, N. A.; Shayesteh, F.; Asim, N.; Motallebi, N. Preparation of PVP-coated copper oxide nanosheets as antibacterial and antifungal agents. J. Mater. Res. 2013, 28, 3109–3118.

18

Palomar-Pardave, M.; Gonzales, I.; Romero-Romo, M.; Oropez, T. MES 23: Electrochemistry, Nanotechnology, and Biomaterials; Electrochemical Society: Pennington, NJ, USA, 2008.

19

Rich, R. Inorganic Reactions in Water; Springer: Berlin, Heidelberg, Germany, 2007.

20

Emeléus, H. J.; Sharpe, A. G. Advances in Inorganic Chemistry and Radiochemistry; Academic Press: New York, 1964.

21
Pung, S. -Y.; Lee, W. -P.; Aziz, A. Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. 2012, 2012, Article ID 608183.https://doi.org/10.1155/2012/608183
22

Alyea, H. N. Heat of solution of Na2S2O3(5H2O). J. Chem. Educ. 1969, 46, A34.

23

Huang, M.; Tso, E.; Datye, A. K.; Prairie, M. R.; Stange, B. M. Removal of silver in photographic processing waste by TiO2-based photocatalysis. Environ. Sci. Technol. 1996, 30, 3084–3088.

24

Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.

25

Cai, R.; Liu, H.; Zhang, W. Y.; Tan, H. T.; Yang, D.; Huang, Y. Z.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Controlled synthesis of double-wall a-FePO4 nanotubes and their LIB cathode properties. Small 2013, 9, 1036–1041.

26

Chen, J. S.; Liu, J.; Qiao, S. Z.; Xu, R.; Lou, X. W. Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. Chem. Commun. 2011, 47, 10443–10445.

27

Adair, J. H.; Suvaci, E. Morphological control of particles. Curr. Opin. Colloid Interface Sci. 2000, 5, 160–167.

28

Wang, R. W.; Zhu, G. Z.; Mei, L.; Xie, Y.; Ma, H. B.; Ye, M.; Qing, F. L.; Tan, W. H. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J. Am. Chem. Soc. 2014, 136, 2731–2734.

29

Acres, R. G.; Ellis, A. V.; Alvino, J.; Lenahan, C. E.; Khodakov, D. A.; Metha, G. F.; Andersson, G. G. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J. Phys. Chem. C 2012, 116, 6289–6297.

30

Dixit, C. K.; Vashist, S. K.; O'Neill, F. T.; O'Reilly, B.; MacCraith, B. D.; O'Kennedy, R. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal. Chem. 2010, 82, 7049–7052.

31

Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic Press: New York, 2008; pp 871–879.

32

Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X.; Cong, W. S. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 2014, 6, 10394–10403.

33

Xiao, Z. Y.; Shangguan, D.; Cao, Z. H.; Fang, X. H.; Tan, W. H. Cell-specific internalization study of an aptamer from whole cell selection. Chem. —Eur. J. 2008, 14, 1769–1775.

34

Weiss, R. B.; Sarosy, G.; Clagett-Carr, K.; Russo, M.; Leyland-Jones, B. Anthracycline analogs: The past, present, and future. Cancer Chemother. Pharmacol. 1986, 18, 185–197.

35

Cooper, G. M. The Cell-A Molecular Approach, 2nd ed.; Sinauer Associates, Inc. : Washington, D. C., 2000.

Nano Research
Pages 2520-2530
Cite this article:
Cai R, Yang D, Wu J, et al. Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers. Nano Research, 2016, 9(8): 2520-2530. https://doi.org/10.1007/s12274-016-1138-2

750

Views

14

Crossref

N/A

Web of Science

13

Scopus

2

CSCD

Altmetrics

Received: 28 February 2016
Revised: 02 May 2016
Accepted: 06 May 2016
Published: 10 June 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return