Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rare earth oxides/hydroxides are important emerging materials owing to their unique properties. Shape-controlled synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods with different aspect ratios and trigram-shaped LaCO3OH nanosheets was systematically carried out by controlling the reaction conditions. Hydrazine and polyvinylpyrrolidone (PVP) surfactants used in synthesis are assumed to play a key "dual-template" role in determining the aspect ratio and shape of the resulting nanostructures. Elongated hexagonal bipyramid shaped La(OH)3 nanorods were found to grow along the preferred orientation [0001]. Six equivalent crystallographic facets,
Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.
Xiong, Y. J.; Xia, Y. N. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391.
Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–344.
Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534.
Haynes, C. L.; Yonzon, C. R.; Zhang, X. Y.; Van Duyne, R. P. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, 471–484.
Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275.
Lv, R. C.; Zhong, C. N.; Li, R. M.; Yang, P. P.; He, F.; Gai, S. L.; Hou, Z. Y.; Yang, G. X.; Lin, J. Multifunctional anticancer platform for multimodal imaging and visible light driven photodynamic/photothermal therapy. Chem. Mater. 2015, 27, 1751–1763.
Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673.
Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.
Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.
Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.
Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.
Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape- controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.
Lee, S. M.; Cho, S. N.; Cheon, J. Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 2003, 15, 441–444.
Peng, X. G. Mechanisms for the shape-control and shape- evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.
Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.
Sapra, S.; Poppe, J.; Eychmüller, A. CdSe nanorod synthesis: A new approach. Small 2007, 3, 1886–1888.
Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766.
Yin, A. X.; Liu, W. C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y. W.; Yan, C. H. Ru nanocrystals with shape-dependent surface- enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.
Shiu, J. W.; Lan, C. M.; Chang, Y. C.; Wu, H. P.; Huang, W. K.; Diau, E. W. G. Size-controlled anatase titania single crystals with octahedron-like morphology for dye-sensitized solar cells. ACS Nano 2012, 6, 10862–10873.
Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.
Li, C. X.; Lin, J. Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application. J. Mater. Chem. 2010, 20, 6831–6847.
Bao, N. Z.; Shen, L. M.; An, W.; Padhan, P.; Turner, C. H.; Gupta, A. Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem. Mater. 2009, 21, 3458–3468.
Zhang, S. M.; Zeng, H. C. Self-assembled hollow spheres of β-Ni(OH)2 and their derived nanomaterials. Chem. Mater. 2009, 21, 871–883.
Daff, T. D.; de Leeuw, N. H. Ab initio molecular dynamics simulations of the cooperative adsorption of hydrazine and water on copper surfaces: Implications for shape control of nanoparticles. Chem. Mater. 2011, 23, 2718–2728.
Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.
Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.
Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One- dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.
Bakkers, E. P. A. M.; Verheijen, M. A. Synthesis of InP nanotubes. J. Am. Chem. Soc. 2003, 125, 3440–3441.
Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.
Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.
Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. W.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.
Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Single- crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351.
Ma, C.; Ding, Y.; Moore, D.; Wang, X. D.; Wang, Z. L. Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 2004, 126, 708–709.
Boulon, M. E.; Cucinotta, G.; Luzon, J.; Degl'Innocenti, C.; Perfetti, M.; Bernot, K.; Calvez, G.; Caneschi, A.; Sessoli, R. Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angew. Chem., Int. Ed. 2013, 52, 350–354.
Ju, Q.; Tu, D. T.; Liu, Y. S.; Li, R. F.; Zhu, H. M.; Chen, J. C.; Chen, Z.; Huang, M. D.; Chen, X. Y. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/ magnetic multimodal BioProbes. J. Am. Chem. Soc. 2012, 134, 1323–1330.
Shao, Z. M.; Saitzek, S.; Roussel, P.; Desfeux, R. Stability limit of the layered-perovskite structure in Ln2Ti2O7 (Ln = lanthanide) thin films grown on (110)-oriented SrTiO3 substrates by the sol–gel route. J. Mater. Chem. 2012, 22, 24894–24901.
Palmer, M. S.; Neurock, M.; Olken, M. M. Periodic density functional theory study of methane activation over La2O3: Activity of O2–, O–, O22–, oxygen point defect, and Sr2+-doped surface sites. J. Am. Chem. Soc. 2002, 124, 8452–8461.
Boglio, C.; Lemière, G.; Hasenknopf, B.; Thorimbert, S.; Lacète, E.; Malacria, M. Lanthanide complexes of the monovacant Dawson polyoxotungstate[α1-P2W17O61]10– as selective and recoverable Lewis acid catalysts. Angew. Chem., Int. Ed. 2006, 45, 3324–3327.
Padhye, P.; Poddar, P. Static and dynamic photoluminescence and photocatalytic properties of uniform, monodispersed up/down-converting, highly luminescent, lanthanide-ion- doped β-NaYF4 phosphor microcrystals with controlled multiform morphologies. J. Mater. Chem. A 2014, 2, 19189–19200.
Ananias, D.; Ferreira, A.; Carlos, L. D.; Rocha, J. Multifunctional sodium lanthanide silicates: From blue emitters and infrared S-band amplifiers to X-ray phosphors. Adv. Mater. 2003, 15, 980–985.
Zhu, H.; Chen, X.; Jin, L. M.; Wang, Q. J.; Wang, F.; Yu, S. F. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano 2013, 7, 11420–11426.
Gao, R.; Zhao, M. J.; Guan, Y.; Fang, X. Y.; Li, X. H.; Yan, D. P. Ordered and flexible lanthanide complex thin films showing up-conversion and color-tunable luminescence. J. Mater. Chem. C 2014, 2, 9579–9586.
Korzenski, M. B.; Lecoeur, P.; Mercey, B.; Chippaux, D.; Raveau, B.; Desfeux, R. PLD-grown Y2O3 thin films from Y metal: An advantageous alternative to films deposited from yttria. Chem. Mater. 2000, 12, 3139–3150.
Capobianco, J. A.; Boyer, J. C.; Vetrone, F.; Speghini, A.; Bettinelli, M. Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3. Chem. Mater. 2002, 14, 2915–2921.
Xu, A. W.; Fang, Y. P.; You, L. P.; Liu, H. Q. A simple method to synthesize Dy(OH)3 and DY2O3 nanotubes. J. Am. Chem. Soc. 2003, 125, 1494–1495.
Jia, G.; Yang, M.; Song, Y. H.; You, H. P.; Zhang, H. J. General and facile method to prepare uniform Y2O3: Eu hollow microspheres. Cryst. Growth Des. 2009, 9, 301–307.
Hu, C. G.; Liu, H.; Dong, W. T.; Zhang, Y. Y.; Bao, G.; Lao, C. S.; Wang, Z. L. La(OH)3 and La2O3 nanobelts— Synthesis and physical properties. Adv. Mater. 2007, 19, 470–474.
Yan, R. X.; Sun, X. M.; Wang, X.; Peng, Q.; Li, Y. D. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chem. —Eur. J. 2005, 11, 2183–2195.
Fang, Y. P.; Xu, A. W.; Song, R. Q.; Zhang, H. X.; You, L. P.; Yu, J. C.; Liu, H. Q. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 2003, 125, 16025–16034.
Niu, F.; Cao, A. M.; Song, W. G.; Wan, L. J. La(OH)3 hollow nanostructures with trapezohedron morphologies using a new kirkendall diffusion couple. J. Phys. Chem. C 2008, 112, 17988–17993.
Zheng, D. Z.; Shi, J. Y.; Lu, X. H.; Wang, C. S.; Liu, Z. Q.; Liang, C. L.; Liu, P.; Tong, Y. X. Controllable growth of La(OH)3 nanorod and nanotube arrays. CrystEngComm 2010, 12, 4066–4070.
Feldgitscher, C.; Peterlik, H.; Ivanovici, S.; Puchberger, M.; Kickelbick, G. Crosslinked hybrid polymer matrices with nanostructure directing abilities for lanthanum hydroxide growth. Chem. Commun. 2009, 5564–5566.
González-Rovira, L.; Sánchez-Amaya, J. M.; López-Haro, M.; Hungria, A. B.; Boukha, Z.; Bernal, S.; Botana, F. J. Formation and characterization of nanotubes of La(OH)3 obtained using porous alumina membranes. Nanotechnology 2008, 19, 495305.
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes. Electrochem. Commun. 2007, 9, 683–688.
Jia, G.; Huang, Y. J.; Song, Y. H.; Yang, M.; Zhang, L. H.; You, H. P. Controllable synthesis and luminescence properties of La(OH)3 and La(OH)3: Tb3+ nanocrystals with multiform morphologies. Eur. J. Inorg. Chem. 2009, 25, 3721–3726.
Wang, X.; Li, Y. D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties. Chem. —Eur. J. 2003, 9, 5627–5635.
Lv, R. C.; Yang, G. X.; Dai, Y. L.; Gai, S. L.; He, F.; Yang, P. P. Self-produced bubble-template synthesis of La2O3: Yb/ Er@Au hollow spheres with markedly enhanced luminescence and release properties. CrystEngComm 2014, 16, 9612–9621.
Lv, R. C.; Yang, G. X.; He, F.; Dai, Y. L.; Gai, S. L.; Yang, P. P. LaF3: Ln mesoporous spheres: Controllable synthesis, tunable luminescence and application for dual-modal chemo-/ photo-thermal therapy. Nanoscale 2014, 6, 14799–14809.
Wang, X.; Li, Y. D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Ed. 2002, 41, 4790–4793.
Nishijo, J.; Oishi, O.; Judai, K.; Nishi, N. Facile and mass- producible fabrication of one-dimensional Ag nanoparticle arrays. Chem. Mater. 2007, 19, 4627–4629.
den Hertog, M. I.; Schmid, H.; Cooper, D.; Rouviere, J. L.; Björk, M. T.; Riel, H.; Rivallin, P.; Karg, S.; Riess, W. Mapping active dopants in single silicon nanowires using off-axis electron holography. Nano Lett. 2009, 9, 3837–3843.
Shah, A.; Ding, A.; Wang, Y. H.; Zhang, L.; Wang, D. X.; Muhammad, J.; Huang, H.; Duan, Y. P.; Dong, X. L.; Zhang, Z. D. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites. Carbon 2016, 96, 987–997.
Midgley, P. A. An introduction to off-axis electron holography. Micron 2001, 32, 167–184.
Twitchett, A. C.; Dunin-Borkowski, R. E.; Hallifax, R. J.; Broom, R. F.; Midgley, P. A. Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions. Microsc. Microanal. 2005, 11, 66–78.
Tian, H. F.; Sun, J. R.; Lu, H. B.; Jin, K. J.; Yang, H. X.; Yu, H. C.; Li, J. Q. Electrostatic potential in manganite-based heterojunctions by electron holography. Appl. Phys. Lett. 2005, 87, 164102.
Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.
Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.
Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.