AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods and the distribution of electric property by off-axis electron holography

Zhiwei WenChongyun LiangHan BiYuesheng LiRenchao Che( )
Laboratory of Advanced MaterialsDepartment of Materials ScienceiChEMCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of ChemistryFudan UniversityShanghai200438China
Show Author Information

Graphical Abstract

Abstract

Rare earth oxides/hydroxides are important emerging materials owing to their unique properties. Shape-controlled synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods with different aspect ratios and trigram-shaped LaCO3OH nanosheets was systematically carried out by controlling the reaction conditions. Hydrazine and polyvinylpyrrolidone (PVP) surfactants used in synthesis are assumed to play a key "dual-template" role in determining the aspect ratio and shape of the resulting nanostructures. Elongated hexagonal bipyramid shaped La(OH)3 nanorods were found to grow along the preferred orientation [0001]. Six equivalent crystallographic facets, (202¯0),(022¯0),(22¯00), (02¯20),(2¯200), and (2¯020) lattice planes, were found to be exposed on the side surfaces on each nanorod as confirmed by combined transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) analyses. A double-polarization phenomenon was found to occur at the nanorod surfaces by employing off-axis electron holography, implying that the material could be used as an effective dielectric microwave absorber. La(OH)3 nanorods with larger aspect ratios exhibit better absorption properties with respect to the maximum reflection loss and effective absorbing bandwidth. Thus, a novel method towards the reasonable design of bipyramid shaped La(OH)3 nanorods exhibiting tunable microwave absorption properties is proposed based on our synthesis strategy.

Electronic Supplementary Material

Download File(s)
nr-9-9-2561_ESM.pdf (3.2 MB)

References

1

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

2

Xiong, Y. J.; Xia, Y. N. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391.

3

Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–344.

4

Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534.

5

Haynes, C. L.; Yonzon, C. R.; Zhang, X. Y.; Van Duyne, R. P. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, 471–484.

6

Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275.

7

Lv, R. C.; Zhong, C. N.; Li, R. M.; Yang, P. P.; He, F.; Gai, S. L.; Hou, Z. Y.; Yang, G. X.; Lin, J. Multifunctional anticancer platform for multimodal imaging and visible light driven photodynamic/photothermal therapy. Chem. Mater. 2015, 27, 1751–1763.

8

Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673.

9

Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

10

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

11

Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

12

Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.

13

Peng, Z. A.; Peng, X. G. Nearly monodisperse and shape- controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

14

Lee, S. M.; Cho, S. N.; Cheon, J. Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 2003, 15, 441–444.

15

Peng, X. G. Mechanisms for the shape-control and shape- evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

16

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

17

Sapra, S.; Poppe, J.; Eychmüller, A. CdSe nanorod synthesis: A new approach. Small 2007, 3, 1886–1888.

18

Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766.

19

Yin, A. X.; Liu, W. C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y. W.; Yan, C. H. Ru nanocrystals with shape-dependent surface- enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.

20

Shiu, J. W.; Lan, C. M.; Chang, Y. C.; Wu, H. P.; Huang, W. K.; Diau, E. W. G. Size-controlled anatase titania single crystals with octahedron-like morphology for dye-sensitized solar cells. ACS Nano 2012, 6, 10862–10873.

21

Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

22

Li, C. X.; Lin, J. Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application. J. Mater. Chem. 2010, 20, 6831–6847.

23

Bao, N. Z.; Shen, L. M.; An, W.; Padhan, P.; Turner, C. H.; Gupta, A. Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem. Mater. 2009, 21, 3458–3468.

24

Zhang, S. M.; Zeng, H. C. Self-assembled hollow spheres of β-Ni(OH)2 and their derived nanomaterials. Chem. Mater. 2009, 21, 871–883.

25

Daff, T. D.; de Leeuw, N. H. Ab initio molecular dynamics simulations of the cooperative adsorption of hydrazine and water on copper surfaces: Implications for shape control of nanoparticles. Chem. Mater. 2011, 23, 2718–2728.

26

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

27

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

28

Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One- dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

29

Bakkers, E. P. A. M.; Verheijen, M. A. Synthesis of InP nanotubes. J. Am. Chem. Soc. 2003, 125, 3440–3441.

30

Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

31

Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.

32

Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. W.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.

33

Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Single- crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351.

34

Ma, C.; Ding, Y.; Moore, D.; Wang, X. D.; Wang, Z. L. Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 2004, 126, 708–709.

35

Boulon, M. E.; Cucinotta, G.; Luzon, J.; Degl'Innocenti, C.; Perfetti, M.; Bernot, K.; Calvez, G.; Caneschi, A.; Sessoli, R. Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angew. Chem., Int. Ed. 2013, 52, 350–354.

36

Ju, Q.; Tu, D. T.; Liu, Y. S.; Li, R. F.; Zhu, H. M.; Chen, J. C.; Chen, Z.; Huang, M. D.; Chen, X. Y. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/ magnetic multimodal BioProbes. J. Am. Chem. Soc. 2012, 134, 1323–1330.

37

Shao, Z. M.; Saitzek, S.; Roussel, P.; Desfeux, R. Stability limit of the layered-perovskite structure in Ln2Ti2O7 (Ln = lanthanide) thin films grown on (110)-oriented SrTiO3 substrates by the sol–gel route. J. Mater. Chem. 2012, 22, 24894–24901.

38

Palmer, M. S.; Neurock, M.; Olken, M. M. Periodic density functional theory study of methane activation over La2O3: Activity of O2–, O, O22–, oxygen point defect, and Sr2+-doped surface sites. J. Am. Chem. Soc. 2002, 124, 8452–8461.

39

Boglio, C.; Lemière, G.; Hasenknopf, B.; Thorimbert, S.; Lacète, E.; Malacria, M. Lanthanide complexes of the monovacant Dawson polyoxotungstate[α1-P2W17O61]10– as selective and recoverable Lewis acid catalysts. Angew. Chem., Int. Ed. 2006, 45, 3324–3327.

40

Padhye, P.; Poddar, P. Static and dynamic photoluminescence and photocatalytic properties of uniform, monodispersed up/down-converting, highly luminescent, lanthanide-ion- doped β-NaYF4 phosphor microcrystals with controlled multiform morphologies. J. Mater. Chem. A 2014, 2, 19189–19200.

41

Ananias, D.; Ferreira, A.; Carlos, L. D.; Rocha, J. Multifunctional sodium lanthanide silicates: From blue emitters and infrared S-band amplifiers to X-ray phosphors. Adv. Mater. 2003, 15, 980–985.

42

Zhu, H.; Chen, X.; Jin, L. M.; Wang, Q. J.; Wang, F.; Yu, S. F. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano 2013, 7, 11420–11426.

43

Gao, R.; Zhao, M. J.; Guan, Y.; Fang, X. Y.; Li, X. H.; Yan, D. P. Ordered and flexible lanthanide complex thin films showing up-conversion and color-tunable luminescence. J. Mater. Chem. C 2014, 2, 9579–9586.

44

Korzenski, M. B.; Lecoeur, P.; Mercey, B.; Chippaux, D.; Raveau, B.; Desfeux, R. PLD-grown Y2O3 thin films from Y metal: An advantageous alternative to films deposited from yttria. Chem. Mater. 2000, 12, 3139–3150.

45

Capobianco, J. A.; Boyer, J. C.; Vetrone, F.; Speghini, A.; Bettinelli, M. Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3. Chem. Mater. 2002, 14, 2915–2921.

46

Xu, A. W.; Fang, Y. P.; You, L. P.; Liu, H. Q. A simple method to synthesize Dy(OH)3 and DY2O3 nanotubes. J. Am. Chem. Soc. 2003, 125, 1494–1495.

47

Jia, G.; Yang, M.; Song, Y. H.; You, H. P.; Zhang, H. J. General and facile method to prepare uniform Y2O3: Eu hollow microspheres. Cryst. Growth Des. 2009, 9, 301–307.

48

Hu, C. G.; Liu, H.; Dong, W. T.; Zhang, Y. Y.; Bao, G.; Lao, C. S.; Wang, Z. L. La(OH)3 and La2O3 nanobelts— Synthesis and physical properties. Adv. Mater. 2007, 19, 470–474.

49

Yan, R. X.; Sun, X. M.; Wang, X.; Peng, Q.; Li, Y. D. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chem. —Eur. J. 2005, 11, 2183–2195.

50

Fang, Y. P.; Xu, A. W.; Song, R. Q.; Zhang, H. X.; You, L. P.; Yu, J. C.; Liu, H. Q. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 2003, 125, 16025–16034.

51

Niu, F.; Cao, A. M.; Song, W. G.; Wan, L. J. La(OH)3 hollow nanostructures with trapezohedron morphologies using a new kirkendall diffusion couple. J. Phys. Chem. C 2008, 112, 17988–17993.

52

Zheng, D. Z.; Shi, J. Y.; Lu, X. H.; Wang, C. S.; Liu, Z. Q.; Liang, C. L.; Liu, P.; Tong, Y. X. Controllable growth of La(OH)3 nanorod and nanotube arrays. CrystEngComm 2010, 12, 4066–4070.

53

Feldgitscher, C.; Peterlik, H.; Ivanovici, S.; Puchberger, M.; Kickelbick, G. Crosslinked hybrid polymer matrices with nanostructure directing abilities for lanthanum hydroxide growth. Chem. Commun. 2009, 5564–5566.

54

González-Rovira, L.; Sánchez-Amaya, J. M.; López-Haro, M.; Hungria, A. B.; Boukha, Z.; Bernal, S.; Botana, F. J. Formation and characterization of nanotubes of La(OH)3 obtained using porous alumina membranes. Nanotechnology 2008, 19, 495305.

55

Bocchetta, P.; Santamaria, M.; Di Quarto, F. Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes. Electrochem. Commun. 2007, 9, 683–688.

56

Jia, G.; Huang, Y. J.; Song, Y. H.; Yang, M.; Zhang, L. H.; You, H. P. Controllable synthesis and luminescence properties of La(OH)3 and La(OH)3: Tb3+ nanocrystals with multiform morphologies. Eur. J. Inorg. Chem. 2009, 25, 3721–3726.

57

Wang, X.; Li, Y. D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties. Chem. —Eur. J. 2003, 9, 5627–5635.

58

Lv, R. C.; Yang, G. X.; Dai, Y. L.; Gai, S. L.; He, F.; Yang, P. P. Self-produced bubble-template synthesis of La2O3: Yb/ Er@Au hollow spheres with markedly enhanced luminescence and release properties. CrystEngComm 2014, 16, 9612–9621.

59

Lv, R. C.; Yang, G. X.; He, F.; Dai, Y. L.; Gai, S. L.; Yang, P. P. LaF3: Ln mesoporous spheres: Controllable synthesis, tunable luminescence and application for dual-modal chemo-/ photo-thermal therapy. Nanoscale 2014, 6, 14799–14809.

60

Wang, X.; Li, Y. D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Ed. 2002, 41, 4790–4793.

61

Nishijo, J.; Oishi, O.; Judai, K.; Nishi, N. Facile and mass- producible fabrication of one-dimensional Ag nanoparticle arrays. Chem. Mater. 2007, 19, 4627–4629.

62

den Hertog, M. I.; Schmid, H.; Cooper, D.; Rouviere, J. L.; Björk, M. T.; Riel, H.; Rivallin, P.; Karg, S.; Riess, W. Mapping active dopants in single silicon nanowires using off-axis electron holography. Nano Lett. 2009, 9, 3837–3843.

63

Shah, A.; Ding, A.; Wang, Y. H.; Zhang, L.; Wang, D. X.; Muhammad, J.; Huang, H.; Duan, Y. P.; Dong, X. L.; Zhang, Z. D. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites. Carbon 2016, 96, 987–997.

64

Midgley, P. A. An introduction to off-axis electron holography. Micron 2001, 32, 167–184.

65

Twitchett, A. C.; Dunin-Borkowski, R. E.; Hallifax, R. J.; Broom, R. F.; Midgley, P. A. Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions. Microsc. Microanal. 2005, 11, 66–78.

66

Tian, H. F.; Sun, J. R.; Lu, H. B.; Jin, K. J.; Yang, H. X.; Yu, H. C.; Li, J. Q. Electrostatic potential in manganite-based heterojunctions by electron holography. Appl. Phys. Lett. 2005, 87, 164102.

67

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

68

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

69

Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

Nano Research
Pages 2561-2571
Cite this article:
Wen Z, Liang C, Bi H, et al. Controllable synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods and the distribution of electric property by off-axis electron holography. Nano Research, 2016, 9(9): 2561-2571. https://doi.org/10.1007/s12274-016-1142-6

781

Views

12

Crossref

N/A

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 11 February 2016
Revised: 09 May 2016
Accepted: 10 May 2016
Published: 13 June 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return