Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
B sheets have been intently studied, and various candidates with vacancies have been reported in theoretical investigations, including their possible growth on metal surfaces. However, a recent experiment reported that the borophene formed on a Ag (111) surface consisted of a buckled triangular lattice without vacancies. Our calculations propose a novel nucleation mechanism of B clusters and emphasize the B–Ag interaction in the growth process of borophene, demonstrating the structural evolution of triangular fragments with various profiles and vacancy distributions. Compared with the triangular lattice without vacancies, we have confirmed that the sheet energetically favored during the nucleation and growth is that containing 1/6 vacancies in a stripe pattern, whose scanning tunneling microscopy image is in better agreement with the experimental observation.
Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349– 1358.
Oger, E.; Crawford, N. R. M.; Kelting, R.; Weis, P.; Kappes, M. M.; Ahlrichs, R. Boron cluster cations: Transition from planar to cylindrical structures. Angew. Chem., Int. Ed. 2007, 46, 8503–8506.
Gonzalez Szwacki, N.; Sadrzadeh, A.; Yakobson, B. I. B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 2007, 98, 166804.
Li, W. L.; Zhao, Y. F.; Hu, H. S.; Li, J.; Wang, L. S. [B30]–: A quasiplanar chiral boron cluster. Angew. Chem., Int. Ed. 2014, 53, 5540–5545.
Piazza, Z. A.; Hu, H. S.; Li, W. L.; Zhao, Y. F.; Li, J.; Wang, L. S. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 3113.
Tang, H.; Ismail-Beigi, S. Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 2007, 99, 115501.
Yang, X. B.; Ding, Y.; Ni, J. Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 2008, 77, 041402.
Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.
Yu, X.; Li, L. L.; Xu, X. -W.; Tang, C. -C. Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 2012, 116, 20075–20079.
Wu, X. J.; Dai, J.; Zhao, Y.; Zhuo, Z. W.; Yang, J. L.; Zeng, X. C. Two-dimensional boron monolayer sheets. ACS Nano 2012, 6, 7443–7453.
Tang, H.; Ismail-Beigi, S. First-principles study of boron sheets and nanotubes. Phys. Rev. B 2010, 82, 115412.
Lu, H. G.; Mu, Y. W.; Bai, H.; Chen, Q.; Li, S. -D. Binary nature of monolayer boron sheets from ab initio global searches. J. Chem. Phys. 2013, 138, 024701.
Li, W. -L.; Jian, T.; Chen, X.; Chen, T. -T.; Lopez, G. -V.; Li, J.; Wang, L. -S. The planar CoB18‒ cluster as a motif for metallo-borophenes. Angew. Chem., Int. Ed. , in press, DOI: 10.1002/anie. 201601548.
Liu, H. S.; Gao, J. F.; Zhao, J. J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation. Sci. Rep. 2013, 3, 3238.
Liu, Y. Y.; Penev, E. S.; Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem., Int. Ed. 2013, 52, 3156–3159.
Zhang, Z. H.; Yang, Y.; Gao, G. Y.; Yakobson, B. I. Two- dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 2015, 54, 13022–13026.
Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 127, 15693–15697.
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. -L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.
Satta, M.; Colonna, S.; Flammini, R.; Cricenti, A.; Ronci, F. Silicon reactivity at the Ag(111) surface. Phys. Rev. Lett. 2015, 115, 026102.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Xu, S. -G.; Zhao, Y. -J.; Liao, J. -H.; Yang, X. -B. Understanding the stable boron clusters: A bond model and first-principles calculations based on high-throughput screening. J. Chem. Phys. 2015, 142, 214307.
Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.