Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Temperature-dependent resonance energy transfer from CdSe–ZnS core–shell quantum dots to monolayer MoS2

Juan LiWeina ZhangYao ZhangHongxiang LeiBaojun Li()
State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Physics and EngineeringSun Yat-Sen UniversityGuangzhou510275China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We investigated the temperature-dependent resonance energy transfer (ET) from CdSe–ZnS core–shell quantum dots (QDs) to monolayer MoS2. QDs/MoS2 structures were fabricated using a spin-coating method. Photoluminescence (PL) spectra and decay curves of the QDs/MoS2 structures were measured in the temperature range of 80-400 K. The results indicate that the PL intensity of the QDs decreased approximately 81% with increasing temperature, whereas that of the MoS2 increased up to a maximum of 78% at 300 K because of the combined effect of thermal quenching and the ET in the QDs/MoS2 structures. The ET efficiency and ET rate also exhibited similar variation trends, both increased with increasing temperature from 80 to 260 K and then decreased until 400 K, resulting in a maximum ET efficiency of 22% and an ET rate of 1.17 ns–1 at ~260 K. These results are attributed to the varied distribution of the localized excitons and free excitons in the QDs/MoS2 structures with increasing temperature.

Electronic Supplementary Material

Download File(s)
nr-9-9-2623_ESM.pdf (1.3 MB)

References

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

2

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

3

Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.

4

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

5

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

6

Najmaei, S.; Mlayah, A.; Arbouet, A.; Girard, C.; Léotin, J.; Lou, J. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. ACS Nano 2014, 8, 12682-12689.

7

Lee, B.; Park, J.; Han, G. H.; Ee, H. S.; Naylor, C. H.; Liu, W. J.; Johnson, A. T. C.; Agarwal, R. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 2015, 15, 3646-3653.

8

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

9

Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911.

10

Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358-363.

11

Yin, Z. Y.; Zhang, X.; Cai, Y. Q.; Chen, J. Z.; Wong, J. I.; Tay, Y. Y.; Chai, J. W.; Wu, J.; Zeng, Z. Y.; Zheng, B. et al. Preparation of MoS2-MoO3 hybrid nanomaterials for light- emitting diodes. Angew. Chem. 2014, 126, 12768-12773.

12

Kim, C.; Nguyen, T. P.; van Le, Q.; Jeon, J. M.; Jang, H. W.; Kim, S. Y. Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 2015, 25, 4512- 4519.

13

Salehzadeh, O.; Tran, N. H.; Liu, X.; Shih, I.; Mi, Z. Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 2014, 14, 4125-4130.

14

Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235-5240.

15

Schornbaum, J.; Winter, B.; Schießl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798-5806.

16

Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176-180.

17

Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.

18

Zhang, D. T.; Wang, D. Z. R.; Creswell, R.; Lu, C. G.; Liou, J.; Herman, I. P. Passivation of CdSe quantum dots by graphene and MoS2 monolayer encapsulation. Chem. Mater. 2015, 27, 5032-5039.

19

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

20

Prins, F.; Goodman, A. J.; Tisdale, W. A. Reduced dielectric screening and enhanced energy transfer in single- and few- layer MoS2. Nano Lett. 2014, 14, 6087-6091.

21

Prasai, D.; Klots, A. R.; Newaz, A. K. M.; Niezgoda, J. S.; Orfield, N. J.; Escobar, C. A.; Wynn, A.; Efimov, A.; Jennings, G. K.; Rosenthal, S. J. et al. Electrical control of near-field energy transfer between quantum dots and two- dimensional semiconductors. Nano Lett. 2015, 15, 4374-4380.

22

Wu, Y. H.; Arai, K.; Yao, T. Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures. Phys. Rev. B 1996, 53, R10485.

23

Liu, W. Y.; Zhang, Y.; Zhai, W. W.; Wang, Y. H.; Zhang, T. Q.; Gu, P. F.; Chu, H. R.; Zhang, H. Z.; Cui, T.; Wang, Y. D. et al. Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots. J. Phys. Chem. C 2013, 117, 19288-19294.

24

Yu, Y. J.; Kim, K. S.; Nam, J.; Kwon, S. R.; Byun, H.; Lee, K.; Ryou, J. H.; Dupuis, R. D.; Kim, J.; Ahn, G. et al. Temperature-dependent resonance energy transfer from semiconductor quantum wells to graphene. Nano Lett. 2015, 15, 896-902.

25

Rindermann, J. J.; Pozina, G.; Monemar, B.; Hultman, L.; Amano, H.; Lagoudakis, P. G. Dependence of resonance energy transfer on exciton dimensionality. Phys. Rev. Lett. 2011, 107, 236805.

Nano Research
Pages 2623-2631
Cite this article:
Li J, Zhang W, Zhang Y, et al. Temperature-dependent resonance energy transfer from CdSe–ZnS core–shell quantum dots to monolayer MoS2. Nano Research, 2016, 9(9): 2623-2631. https://doi.org/10.1007/s12274-016-1149-z
Metrics & Citations  
Article History
Copyright
Return