AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Temperature-dependent resonance energy transfer from CdSe–ZnS core–shell quantum dots to monolayer MoS2

Juan LiWeina ZhangYao ZhangHongxiang LeiBaojun Li( )
State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Physics and EngineeringSun Yat-Sen UniversityGuangzhou510275China
Show Author Information

Graphical Abstract

Abstract

We investigated the temperature-dependent resonance energy transfer (ET) from CdSe–ZnS core–shell quantum dots (QDs) to monolayer MoS2. QDs/MoS2 structures were fabricated using a spin-coating method. Photoluminescence (PL) spectra and decay curves of the QDs/MoS2 structures were measured in the temperature range of 80-400 K. The results indicate that the PL intensity of the QDs decreased approximately 81% with increasing temperature, whereas that of the MoS2 increased up to a maximum of 78% at 300 K because of the combined effect of thermal quenching and the ET in the QDs/MoS2 structures. The ET efficiency and ET rate also exhibited similar variation trends, both increased with increasing temperature from 80 to 260 K and then decreased until 400 K, resulting in a maximum ET efficiency of 22% and an ET rate of 1.17 ns–1 at ~260 K. These results are attributed to the varied distribution of the localized excitons and free excitons in the QDs/MoS2 structures with increasing temperature.

Electronic Supplementary Material

Download File(s)
nr-9-9-2623_ESM.pdf (1.3 MB)

References

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

2

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

3

Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.

4

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

5

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

6

Najmaei, S.; Mlayah, A.; Arbouet, A.; Girard, C.; Léotin, J.; Lou, J. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. ACS Nano 2014, 8, 12682-12689.

7

Lee, B.; Park, J.; Han, G. H.; Ee, H. S.; Naylor, C. H.; Liu, W. J.; Johnson, A. T. C.; Agarwal, R. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett. 2015, 15, 3646-3653.

8

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

9

Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911.

10

Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358-363.

11

Yin, Z. Y.; Zhang, X.; Cai, Y. Q.; Chen, J. Z.; Wong, J. I.; Tay, Y. Y.; Chai, J. W.; Wu, J.; Zeng, Z. Y.; Zheng, B. et al. Preparation of MoS2-MoO3 hybrid nanomaterials for light- emitting diodes. Angew. Chem. 2014, 126, 12768-12773.

12

Kim, C.; Nguyen, T. P.; van Le, Q.; Jeon, J. M.; Jang, H. W.; Kim, S. Y. Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 2015, 25, 4512- 4519.

13

Salehzadeh, O.; Tran, N. H.; Liu, X.; Shih, I.; Mi, Z. Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Lett. 2014, 14, 4125-4130.

14

Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235-5240.

15

Schornbaum, J.; Winter, B.; Schießl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798-5806.

16

Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176-180.

17

Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.

18

Zhang, D. T.; Wang, D. Z. R.; Creswell, R.; Lu, C. G.; Liou, J.; Herman, I. P. Passivation of CdSe quantum dots by graphene and MoS2 monolayer encapsulation. Chem. Mater. 2015, 27, 5032-5039.

19

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

20

Prins, F.; Goodman, A. J.; Tisdale, W. A. Reduced dielectric screening and enhanced energy transfer in single- and few- layer MoS2. Nano Lett. 2014, 14, 6087-6091.

21

Prasai, D.; Klots, A. R.; Newaz, A. K. M.; Niezgoda, J. S.; Orfield, N. J.; Escobar, C. A.; Wynn, A.; Efimov, A.; Jennings, G. K.; Rosenthal, S. J. et al. Electrical control of near-field energy transfer between quantum dots and two- dimensional semiconductors. Nano Lett. 2015, 15, 4374-4380.

22

Wu, Y. H.; Arai, K.; Yao, T. Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures. Phys. Rev. B 1996, 53, R10485.

23

Liu, W. Y.; Zhang, Y.; Zhai, W. W.; Wang, Y. H.; Zhang, T. Q.; Gu, P. F.; Chu, H. R.; Zhang, H. Z.; Cui, T.; Wang, Y. D. et al. Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots. J. Phys. Chem. C 2013, 117, 19288-19294.

24

Yu, Y. J.; Kim, K. S.; Nam, J.; Kwon, S. R.; Byun, H.; Lee, K.; Ryou, J. H.; Dupuis, R. D.; Kim, J.; Ahn, G. et al. Temperature-dependent resonance energy transfer from semiconductor quantum wells to graphene. Nano Lett. 2015, 15, 896-902.

25

Rindermann, J. J.; Pozina, G.; Monemar, B.; Hultman, L.; Amano, H.; Lagoudakis, P. G. Dependence of resonance energy transfer on exciton dimensionality. Phys. Rev. Lett. 2011, 107, 236805.

Nano Research
Pages 2623-2631
Cite this article:
Li J, Zhang W, Zhang Y, et al. Temperature-dependent resonance energy transfer from CdSe–ZnS core–shell quantum dots to monolayer MoS2. Nano Research, 2016, 9(9): 2623-2631. https://doi.org/10.1007/s12274-016-1149-z

599

Views

15

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 29 January 2016
Revised: 12 May 2016
Accepted: 13 May 2016
Published: 17 June 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return