AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction

Wei YeChenhao RenDaobin LiuChengming WangNing ZhangWensheng YanLi SongYujie Xiong( )
Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)Hefei Science Center (CAS)School of Chemistry and Materials Scienceand National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

Semiconducting 2H-MoS2 with high chemical stability is a promising alternative to the existing electrocatalysts for the hydrogen evolution reaction (HER); however, the HER performance largely suffers from the limited number of active S sites and low mobility for charge transport. In this work, we demonstrate that the limitations of 2H-MoS2 for the HER can be overcome by forming hybrid structures with metallic nanowires. Taking the integration with Pd as a proofof- concept, we show with solid experimental evidence that the one-dimensional structure of metallic nanowires facilitates electron transport to active S sites, while the interfacial charge polarization between MoS2 and Pd increases the electron density of the S sites for improved activity. As a result, the hybrid structure exhibits a current density of 122 mA·cm-2 at -300 mV versus RHE and a Tafel slope of 44 mV·decade-1 with excellent durability, well exceeding the performances of bare 2H-MoS2 and metallic 1T-MoS2. This work provides insights into electrocatalyst design based on charge transport and polarization, which can be extended to other hybrid structures.

Electronic Supplementary Material

Download File(s)
nr-9-9-2662_ESM.pdf (3.1 MB)

References

1

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

2

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-17888.

3

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

4

Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides—Efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 2012, 5, 5577-5591.

5

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.

6

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.

7

Voriy, D.; Salehi, M.; Silva, R.; Fujita, T.; Cheng, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.

8

Meng, F. K.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286-10289.

9

Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.

10

Shi, Y.; Wang, J.; Wang, C.; Zhai, T. -T.; Bao, W. -J.; Xu, J. -J.; Xia, X. -H.; Chen, H. -Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365-7370.

11

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun. 2013, 4, 1444.

12

Huang, X. Q.; Zheng, N. F. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods. J. Am. Chem. Soc. 2009, 131, 4602-4603.

13

Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X. W. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 2014, 7, 3302-4603.

14

Gao, M. -R.; Liang, J. -X.; Zheng, Y. -R.; Xu, Y. -F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. -H. An efficient molybdenum disulfide/ cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

15

Zhou, K.; Liu, J.; Shi, Y.; Jiang, S.; Wang, D.; Hu, Y.; Gui, Z. MoS2 nanolayers grown on carbon nanotubes: An advanced reinforcement for epoxy composites. ACS Appl. Mater. Interfaces 2015, 7, 6070-6081.

16

Li, Y. R.; Li, L. L.; Gong, Y. Q.; Bai, S.; Ju, H. X.; Wang, C. M.; Xu, Q.; Zhu, J. F.; Jiang, J.; Xiong, Y. J. Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Res. 2015, 8, 3621-3629.

17

Ozawa, K.; Kakubo, T.; Shimizu, K.; Amino, N.; Mase, K.; Komatsu, T. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface. Appl. Surf. Sci. 2013, 264, 297-304.

18

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

19

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909-913.

20

Du, N. N.; Wang, C. M.; Wang, X. J.; Lin, Y.; Jiang, J.; Xiong, Y. J. Trimetallic tristar nanostructures: Tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2016, 28, 2077-2084.

21

Bai, Y.; Zhang, W. H.; Zhang, Z. H.; Zhou, J.; Wang, X. J.; Wang, C. M.; Huang, W. X.; Jiang, J.; Xiong, Y. J. Controllably interfacing with metal: A strategy for enhancing CO oxidation on oxide catalysts by surface polarization. J. Am. Chem. Soc. 2014, 136, 14650-14653.

22

Chen, W.; Santos, E. J. G.; Zhu, W. G.; Kaxiras, E.; Zhang, Z. Y. Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett. 2013, 13, 509-514.

23

Barawi, M.; Ferrer, I. J.; Ares, J. R.; Sánchez, C. Hydrogen evolution using palladium sulfide (PdS) nanocorals as photoanodes in aqueous solution. ACS Appl. Mater. Interfaces 2014, 6, 20544-20549.

24

Haque, C. A.; Fritz, J. H. Work function changes on contact materials. IEEE Trans. Parts Hybrids Packag. 1974, 10, 27-31.

25

Briggs, D.; Seah, M. P. Practical Surface Analysis; John Wiley & Sons: New York, 1993.

26

Diaz-Chao, P.; Ferrer, I. J.; Ares, J. R.; Sanchez, C. Cubic Pd16S7 as a precursor phase in the formation of tetragonal PdS by sulfuration of Pd thin films. J. Phys. Chem. C 2009, 113, 5329-5335.

27

Gong, C.; Huang, C. M.; Miller, J.; Cheng, L. X.; Hao, Y. F.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K. et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 2013, 7, 11350-11357.

28

Wang, T. Y.; Liu, L.; Zhu, Z. W.; Papakonstantinou, P.; Hu, J. B.; Liu, H. Y.; Li, M. X. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode. Energy Environ. Sci. 2013, 6, 625-633.

29

Chen, S. -Y.; Zheng, C. X.; Fuhrer, M. S.; Yan, J. Helicity- resolved raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano Lett. 2015, 15, 2526-2532.

30

Sreeprasad, T. S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434-4441.

31

Lin, Y. -C.; Dumcenco, D. O.; Huang, Y. -S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.

32

Li, D.; Bancroft, G. M.; Kasrai, M.; Fleet, M. E.; Feng, X. H.; Tan, K. H. Polarized X-ray absorption spectra and electronic structure of molybdenite (2H-MoS2). Phys. Chem. Miner. 1995, 22, 123-128.

33

Zheng, X. L.; Xu, J. B.; Yan, K. Y.; Wang, H.; Wang, Z. L.; Yang, S. H. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 2014, 26, 2344-2353.

34

Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073-7080.

35

Hara, M.; Linke, U.; Wandlowski, T. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4: Part I. Low-index phases. Electrochim. Acta 2007, 52, 5733-5748.

Nano Research
Pages 2662-2671
Cite this article:
Ye W, Ren C, Liu D, et al. Maneuvering charge polarization and transport in 2H-MoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Research, 2016, 9(9): 2662-2671. https://doi.org/10.1007/s12274-016-1153-3

530

Views

28

Crossref

N/A

Web of Science

28

Scopus

4

CSCD

Altmetrics

Received: 05 March 2016
Revised: 13 May 2016
Accepted: 16 May 2016
Published: 27 June 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return