AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde

Xianjun DuNinghua FuShaolong ZhangChen Chen( )Dingsheng WangYadong Li
Department of Chemistry & Collaborative Innovation Center for Nanomaterial Science and EngineeringTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Novel gold-supporting silicate nanotubes are synthesized via a hydrothermal method followed by colloid deposition. Their catalytic performance for the selective oxidation of ethanol to acetaldehyde is assessed. The results show that Au/CuSiO3 nanotubes exhibit both high activity and selectivity at high gas hourly space velocity (GHSV). Ethanol conversion can reach up to ~98%, and the selectivity for acetaldehyde is ~93% at 250 ℃ and ~100, 000 mL·gcat–1·h–1. In comparison, the catalytic activity of Au/MgSiO3 nanotubes is relatively low, and ethanol conversion reaches only ~25% at 250 ℃. However, when Cu species are added to Au/MgSiO3, the catalytic activity improves significantly, indicating that the interactions between Au nanoparticles and Cu species are responsible for the high performance for selective oxidation of ethanol to acetaldehyde.

Electronic Supplementary Material

Download File(s)
nr-9-9-2681_ESM.pdf (1,017 KB)

References

1

Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. Silica-supported Au-CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012, 2, 2537-2546.

2

Guan, Y. J.; Hensen, E. J. M. Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts. J. Catal. 2013, 305, 135-145.

3

Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem., Int. Ed. 2006, 45, 7896-7936.

4

Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett. 1987, 16, 405-408.

5

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301-309.

6

Zhu, Z. N.; Meng, H. F.; Liu, W. J.; Liu, X. F.; Gong, J. X.; Qiu, X. H.; Jiang, L.; Wang, D.; Tang, Z. Y. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem., Int. Ed. 2011, 50, 1593-1596.

7

Gong, J. L. Structure and surface chemistry of gold-based model catalysts. Chem. Rev. 2012, 112, 2987-3054.

8

Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G. -J.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 2002, 35, 774-781.

9

Christensen, C. H.; Jørgensen, B.; Rass-Hansen, J.; Egeblad, K.; Madsen, R.; Klitgaard, S. K.; Hansen, S. M.; Hansen, M. R.; Andersen, H. C.; Riisager, A. Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew. Chem., Int. Ed. 2006, 45, 4648-4651.

10

Gong, J. L.; Mullins, C. B. Selective oxidation of ethanol to acetaldehyde on gold. J. Am. Chem. Soc. 2008, 130, 16458-16459.

11

Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995-4017.

12

Qi, J.; Chen, J.; Li, G. D.; Li, S. X.; Gao, Y.; Tang, Z. Y. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ. Sci. 2012, 5, 8937-8941.

13

Chen, J.; Wang, D. W.; Qi, J.; Li, G. D.; Zheng, F. Y.; Li, S. X.; Zhao, H. J.; Tang, Z. Y. Monodisperse hollow spheres with sandwich heterostructured shells as high-performance catalysts via an extended SiO2 template method. Small 2015, 11, 420-425.

14

Zheng, N. F.; Stucky, G. D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. 2006, 128, 14278-14280.

15

Mielby, J.; Abildstrøm, J. O.; Wang, F.; Kasama, T.; Weidenthaler, C.; Kegnæs, S. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angew. Chem. 2014, 126, 12721-12724.

16

Simakova, O. A.; Sobolev, V. I.; Koltunov, K. Y.; Campo, B.; Leino, A. -R.; Kordás, K.; Murzin, D. Y. "Double-peak" catalytic activity of nanosized gold supported on titania in gas-phase selective oxidation of ethanol. ChemCatChem 2010, 2, 1535-1538.

17

Wang, X.; Zhuang, J.; Chen, J.; Zhou, K. B.; Li, Y. D. Thermally stable silicate nanotubes. Angew. Chem., Int. Ed. 2004, 43, 2017-2020.

18

Yue, H. R.; Zhao, Y. J.; Zhao, S.; Wang, B.; Ma, X. B.; Gong, J. L. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions. Nat. Commun. 2013, 4, 2339.

19

Yue, H. R.; Ma, X. B.; Gong, J. L. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol. Acc. Chem. Res. 2014, 47, 1483-1492.

20

Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503-2514.

21

van den Berg, R.; Elkjaer, C. F.; Gommes, C. J.; Chorkendorff, I.; Sehested, J.; de Jongh, P. E.; de Jong, K. P.; Helveg, S. Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. J. Am. Chem. Soc. 2016, 138, 3433-3442.

22

Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S. P.; Ma, X. B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 2012, 134, 13922-13925.

23

Comotti, M.; Li, W. -C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917-924.

24

Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhang, M. J.; Lu, G.; Chen, Q. S.; Chen, Y. M.; Guo, G. C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catal. 2015, 5, 4255-4259.

25

Du, X. J.; Zhang, D. S.; Gao, R. H.; Huang, L.; Shi, L. Y.; Zhang, J. P. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chem. Commun. 2013, 49, 6770-6772.

26

Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819-5825.

27

Zhao, Y. X.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763-2776.

28

Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032-14035.

Nano Research
Pages 2681-2686
Cite this article:
Du X, Fu N, Zhang S, et al. Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Research, 2016, 9(9): 2681-2686. https://doi.org/10.1007/s12274-016-1155-1

702

Views

19

Crossref

N/A

Web of Science

19

Scopus

4

CSCD

Altmetrics

Received: 08 May 2016
Revised: 15 May 2016
Accepted: 16 May 2016
Published: 27 June 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return