AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ethylenediaminetetraacetic acid-assisted synthesis of Bi2Se3 nanostructures with unique edge sites

Xianli LiuZhicheng FangQi ZhangRuijie HuangLin LinChunmiao YeChao Ma( )Jie Zeng( )
Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of SciencesHefei Science Center & National Synchrotron Radiation LaboratoryDepartment of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

Nanomaterials with unique edge sites have received increasing attention due to their superior performance in various applications. Herein, we employed an effective ethylenediaminetetraacetic acid (EDTA)-assisted method to synthesize a series of exotic Bi2Se3 nanostructures with distinct edge sites. It was found that the products changed from smooth nanoplates to half-plate-containing and crown-like nanoplates upon increasing the molar ratio of EDTA to Bi3+. Mechanistic studies indicated that, when a dislocation source and relatively high supersaturation exist, the step edges in the initially formed seeds can serve as supporting sites for the growth of epilayers, leading to the formation of half-plate-containing nanoplates. In contrast, when the dislocation source and a suitably low supersaturation are simultaneously present in the system, the dislocation-driven growth mode dominates the process, in which the step edges form at the later stage of the growth responsible for the formation of crown-like nanoplates.

Electronic Supplementary Material

Download File(s)
nr-9-9-2707_ESM.pdf (2.9 MB)

References

1

Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194-198.

2

Hasan, M. Z.; Kane, C. L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.

3

Kong, D. S.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845-849.

4

Müchler, L.; Casper, F.; Yan, B. H.; Chadov, S.; Felser, C. Topological insulators and thermoelectric materials. Phys. Status Solidi (RRL) 2013, 7, 91-100.

5

Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057-1110.

6

Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv. Mater. 2012, 24, 5581-5585.

7

Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281-286.

8

Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

9

Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970-974.

10

Hsieh, D.; Xia, Y.; Wray, L.; Qian, D.; Pal, A.; Dil, J. H.; Osterwalder, J.; Meier, F.; Bihlmayer, G.; Kane, C. L. et al. Observation of unconventional quantum spin textures in topological insulators. Science 2009, 323, 919-922.

11

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.

12

Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398-402.

13

Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X. L.; Zhang, S. C.; Shen, Z. X.; Cui, Y. Aharonov- Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225-229.

14

Hong, M.; Chen, Z. G.; Yang, L.; Han, G.; Zou, J. Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control. Adv. Electron. Mater. 2015, 1, 1500025.

15

Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584-588.

16

Xu, S.; Zhao, W. B.; Hong, J. M.; Zhu, J. J.; Chen, H. Y. Photochemical synthesis of Bi2Se3 nanosphere and nanorods. Mater. Lett. 2005, 59, 319-321.

17

Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J. S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872-2875.

18

Sun, L. P.; Lin, Z. Q.; Peng, J.; Weng, J.; Huang, Y. Z.; Luo, Z. Q. Preparation of few-layer bismuth selenide by liquid-phase-exfoliation and its optical absorption properties. Sci. Rep. 2014, 4, 4794.

19

Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407-2414.

20

Sun, Z. L.; Liufu, S.; Chen, X. H.; Chen, L. D. Controllable synthesis and electrochemical hydrogen storage properties of Bi2Se3 architectural structures. Chem. Commun. 2010, 46, 3101-3103.

21

Ni, B.; Wang, X. Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chem. Sci. 2015, 6, 3572-3576.

22

Tao, C. G.; Jiao, L. Y.; Yazyev, O. V.; Chen, Y. C.; Feng, J. J.; Zhang, X. W.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 2011, 7, 616-620.

23

Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954-17961.

24

Wang, X. R.; Ouyang, Y. J.; Jiao, L. Y.; Wang, H. L.; Xie, L. M.; Wu, J.; Guo, J.; Dai, H. J. Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotechnol. 2011, 6, 563-567.

25

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.

26

Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132-16135.

27

Xu, G.; Wang, J.; Yan, B. H.; Qi, X. L. Topological superconductivity at the edge of transition-metal dichalcogenides. Phys. Rev. B 2014, 90, 100505.

28

Macedo, R. J.; Harrison, S. E.; Dorofeeva, T. S.; Harris, J. S.; Kiehl, R. A. Nanoscale probing of local electrical characteristics on MBE-grown Bi2Te3 surfaces under ambient conditions. Nano Lett. 2015, 15, 4241-4247.

29

Ran, Y.; Zhang, Y.; Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 2009, 5, 298-303.

30

Hao, G. L.; Qi, X.; Fan, Y. P.; Xue, L.; Peng, X. Y.; Wei, X. L.; Zhong, J. X. Spiral growth of topological insulator Sb2Te3 nanoplates. Appl. Phys. Lett. 2013, 102, 013105.

31

Liu, Y.; Weinert, M.; Li, L. Spiral growth without dislocations: Molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001). Phys. Rev. Lett. 2012, 108, 115501.

32

Wyckoff, R. W. G. Crystal Structures, 2nd ed.; Krieger: Malabar, FL, USA, 1986.

33

Hauer, B.; Saltzmann, T.; Simon, U.; Taubner, T. Solvothermally synthesized Sb2Te3 platelets show unexpected optical contrasts in mid-infrared near-field scanning microscopy. Nano Lett. 2015, 15, 2787-2793.

34

Manna, G.; Bose, R.; Pradhan, N. Photocatalytic Au-Bi2S3 heteronanostructures. Angew. Chem., Int. Ed. 2014, 53, 6743-6746.

35

Zhuang, A. W.; Li, J. J.; Wang, Y. C.; Wen, X.; Lin, Y.; Xiang, B.; Wang, X. P.; Zeng, J. Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates. Angew. Chem., Int. Ed. 2014, 126, 6543-6547.

36

Feitosa, A. V.; Miranda, M. A. R.; Sasaki, J. M.; Araújo- Silva, M. A. A new route for preparing CdS thin films by chemical bath deposition using EDTA as ligand. Braz. J. Phys. 2004, 34, 656-658.

37

Xu, L.; Yang, X. Y.; Zhai, Z.; Hou, W. H. EDTA-mediated shape-selective synthesis of Bi2WO6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities. CrystEngComm 2011, 13, 7267-7275.

38

Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969-971.

39

Liu, X. L.; Xu, J. W.; Fang, Z. C.; Lin, L.; Qian, Y.; Wang, Y. C.; Ye, C. M.; Ma, C.; Zeng, J. One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies. Nano Res. 2015, 8, 3612-3620.

40

Hacialioglu, S.; Meng, F.; Jin, S. Facile and mild solution synthesis of Cu2O nanowires and nanotubes driven by screw dislocations. Chem. Commun. 2012, 48, 1174-1176.

Nano Research
Pages 2707-2714
Cite this article:
Liu X, Fang Z, Zhang Q, et al. Ethylenediaminetetraacetic acid-assisted synthesis of Bi2Se3 nanostructures with unique edge sites. Nano Research, 2016, 9(9): 2707-2714. https://doi.org/10.1007/s12274-016-1159-x

707

Views

6

Crossref

N/A

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 20 March 2016
Revised: 17 May 2016
Accepted: 19 May 2016
Published: 05 July 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016
Return