AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography

Gaute OtnesMagnus HeurlinMariusz GraczykJesper WallentinDaniel JacobssonAlexander BergIvan MaximovMagnus T. Borgström( )
Solid State PhysicsLund UniversityBox 118S-221 00LundSweden

Present address: Division of Synchrotron Radiation Research, Lund University, Box 118, S-221 00 Lund, Sweden

Present address: nCHREM/Centre for Analysis and Synthesis, Lund University, Box 124, S-221 00 Lund, Sweden

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Position controlled nanowire growth is important for nanowire-based optoelectronic components which rely on light emission or light absorption. For solar energy harvesting applications, dense arrays of nanowires are needed; however, a major obstacle to obtaining dense nanowire arrays is seed particle displacement and coalescing during the annealing stage prior to nanowire growth. Here, we explore three different strategies to improve pattern preservation of large-area catalyst particle arrays defined by nanoimprint lithography for nanowire growth. First, we see that heat treating the growth substrate prior to nanoimprint lithography improves pattern preservation. Second, we explore the possibility of improving pattern preservation by fixing the seed particles in place prior to annealing by modifying the growth procedure. And third, we show that a SiNx growth mask can fully prevent seed particle displacement. We show how these strategies allow us to greatly improve the pattern fidelity of grown InP nanowire arrays with dimensions suitable for solar cell applications, ultimately achieving 100% pattern preservation over the sampled area. The generic nature of these strategies is supported through the synthesis of GaAs and GaP nanowires.

Electronic Supplementary Material

Download File(s)
nr-9-10-2852_ESM.pdf (6.1 MB)

References

1

Tomioka, K.; Yoshimura, M.; Fukui, T. A Ⅲ-Ⅴ nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189-192.

2

Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.

3

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057-1060.

4

LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. Ⅲ-Ⅴ nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi-RRL 2013, 7, 815-830.

5

Polman, A.; Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 2012, 11, 174-177.

6

Anttu, N.; Abrand, A.; Asoli, D.; Heurlin, M.; Åberg, I.; Samuelson, L.; Borgström, M. Absorption of light in InP nanowire arrays. Nano Res. 2014, 7, 816-823.

7

Chen, M. Y.; Nakai, E.; Tomioka, K.; Fukui, T. Application of free-standing InP nanowire arrays and their optical properties for resource-saving solar cells. Appl. Phys. Express 2015, 8, 012301.

8

Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007, 7, 3249-3252.

9

Kupec, J.; Stoop, R. L.; Witzigmann, B. Light absorption and emission in nanowire array solar cells. Opt. Express 2010, 18, 27589-27605.

10

Anttu, N.; Xu, H. Q. Coupling of light into nanowire arrays and subsequent absorption. J. Nanosci. Nanotechno. 2010, 10, 7183-7187.

11

Mårtensson, T.; Borgström, M.; Seifert, W.; Ohlsson, B. J.; Samuelson, L. Fabrication of individually seeded nanowire arrays by vapour-liquid-solid growth. Nanotechnology 2003, 14, 1255-1258.

12

Mårtensson, T.; Carlberg, P.; Borgström, M.; Montelius, L.; Seifert, W.; Samuelson, L. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 2004, 4, 699-702.

13

Fan, H. J.; Werner, P.; Zacharias, M. Semiconductor nanowires: From self-organization to patterned growth. Small 2006, 2, 700-717.

14

Fuhrmann, B.; Leipner, H. S.; Höche, H. -R.; Schubert, L.; Werner, P.; Gösele, U. Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett. 2005, 5, 2524-2527.

15

Madaria, A. R.; Yao, M. Q.; Chi, C. Y.; Huang, N. F.; Lin, C. X.; Li, R. J.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. Nano Lett. 2012, 12, 2839-2845.

16

Kauppinen, C.; Haggren, T.; Kravchenko, A.; Jiang, H.; Huhtio, T.; Kauppinen, E.; Dhaka, V.; Suihkonen, S.; Kaivola, M.; Lipsanen, H. et al. A technique for large-area position-controlled growth of GaAs nanowire arrays. Nanotechnology 2016, 27, 1356011.

17

Munshi, A. M.; Dheeraj, D. L.; Fauske, V. T.; Kim, D. C.; Huh, J.; Reinertsen, J. F.; Ahtapodov, L.; Lee, K. D.; Heidari, B.; van Helvoort, A. T. J. et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 2014, 14, 960-966.

18

Pierret, A.; Hocevar, M.; Diedenhofen, S. L.; Algra, R. E.; Vlieg, E.; Timmering, E. C.; Verschuuren, M. A.; Immink, G. W. G.; Verheijen, M. A.; Bakkers, E. P. A. M. Generic nano-imprint process for fabrication of nanowire arrays. Nanotechnology 2010, 065305.

19

Jam, R. J.; Heurlin, M.; Jain, V.; Kvennefors, A.; Graczyk, M.; Maximov, I.; Borgström, M. T.; Pettersson, H.; Samuelson, L. Ⅲ-Ⅴ nanowire synthesis by use of electrodeposited gold particles. Nano Lett. 2015, 15, 134-138.

20

Eriksson, T.; Yamada, S.; Krishnan, P. V.; Ramasamy, S.; Heidari, B. High volume nanoimprint lithography on Ⅲ/Ⅴ substrates: Imprint fidelity and stamp lifetime. Microelectron. Eng. 2011, 88, 293-299.

21

Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264-270.

22

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671-675.

23

Hilner, E.; Lundgren, E.; Mikkelsen, A. Surface structure and morphology of InAs(111)B with/without gold nanoparticles annealed under arsenic or atomic hydrogen flux. Surf. Sci. 2010, 604, 354-360.

24

Zakharov, A. A.; Mårsell, E.; Hilner, E.; Timm, R.; Andersen, J. N.; Lundgren, E.; Mikkelsen, A. Manipulating the dynamics of self-propelled gallium droplets by gold nanoparticles and nanoscale surface morphology. ACS Nano 2015, 9, 5422-5431.

25

Anttu, N.; Xu, H. Q. Efficient light management in vertical nanowire arrays for photovoltaics. Opt. Express 2013, 21, A558-A575.

26

Liu, H. S.; Cui, Y.; Ishida, K.; Jin, Z. P. Thermodynamic reassessment of the Au-In binary system. Calphad 2003, 27, 27-37.

27

Piotrowska, A.; Auvray, P.; Guivarc'h, A.; Pelous, G.; Henoc, P. On the formation of binary compounds in Au/InP system. J. Appl. Phys. 1981, 52, 5112-5117.

28

Weizer, V. G.; Fatemi, N. S. Contact spreading and the Au3In-to-Au9In4 transition in the Au-InP system. J. Appl. Phys. 1990, 68, 2275-2284.

29

Fatemi, N. S.; Weizer, V. G. The kinetics of the Au-InP interaction. J. Appl. Phys. 1990, 67, 1934-1939.

30

Wada, O. Thermal reaction of gold metallization on InP. J. Appl. Phys. 1985, 57, 1901-1909.

31

Borg, R. J.; Dienes, G. J. An Introduction to Solid State Diffusion; Academic Press, Inc. : San Diego, CA, 1988.

32

Tomioka, K.; Tanaka, T.; Hara, S.; Hiruma, K.; Fukui, T. Ⅲ-Ⅴ nanowires on Si substrate: Selective-area growth and device applications. IEEE J. Sel. Top. Quant. 2011, 17, 1112-1129.

33

Yao, M. Q.; Huang, N. F.; Cong, S.; Chi, C. -Y.; Seyedi, M. A.; Lin, Y. -T.; Cao, Y.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett. 2014, 14, 3293-3303.

34

Zhang, Y. Y.; Wu, J.; Aagesen, M.; Holm, J.; Hatch, S.; Tang, M. C.; Huo, S. G.; Liu, H. Y. Self-catalyzed ternary core-shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett. 2014, 14, 4542-4547.

35

Russo-Averchi, E.; Vukajlovic Plestina, J.; Tütüncüoglu, G.; Matteini, F.; Dalmau-Mallorquí, A.; de la Mata, M.; Rüffer, D.; Potts, H. A.; Arbiol, J.; Conesa-Boj, S. et al. High yield of GaAs nanowire arrays on Si mediated by the pinning and contact angle of Ga. Nano Lett. 2015, 15, 2869-2874.

36

Spurgeon, J. M.; Plass, K. E.; Kayes, B. M.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si(111) substrate. Appl. Phys. Lett. 2008, 93, 032112.

37

Kendrick, C. E.; Redwing, J. M. The effect of pattern density and wire diameter on the growth rate of micron diameter silicon wires. J. Cryst. Growth 2011, 337, 1-6.

38

Nowzari, A.; Heurlin, M.; Jain, V.; Storm, K.; Hosseinnia, A.; Anttu, N.; Borgström, M. T.; Pettersson, H.; Samuelson, L. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices. Nano Lett. 2015, 15, 1809-1814.

39

Berg, A.; Lenrick, F.; Vainorius, N.; Beech, J. P.; Wallenberg, L. R.; Borgström, M. T. Growth parameter design for homogeneous material composition in ternary GaxIn1-xP nanowires. Nanotechnology 2015, 26, 435601.

40

Dalacu, D.; Kam, A.; Austing, D. G.; Wu, X. H.; Lapointe, J.; Aers, G. C.; Poole, P. J. Selective-area vapour-liquid-solid growth of InP nanowires. Nanotechnology 2009, 20, 395602.

41

Stringfellow, G. B. Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd ed.; Academic Press: San Diego, CA, 1999.

42

Mishra, A.; Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H. et al. Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires. Appl. Phys. Lett. 2007, 91, 263104.

43

Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. et al. Carrier dynamics and quantum confinement in type Ⅱ ZB-WZ InP nanowire homostructures. Nano Lett. 2009, 9, 648-654.

44

Bao, J. M.; Bell, D. C.; Capasso, F.; Erdman, N.; Wei, D. G.; Fröberg, L.; Mårtensson, T.; Samuelson, L. Nanowire-induced Wurtzite InAs thin film on zinc-blende InAs substrate. Adv. Mater. 2009, 21, 3654-3658.

45

Mattila, M.; Hakkarainen, T.; Mulot, M.; Lipsanen, H. Crystal-structure-dependent photoluminescence from InP nanowires. Nanotechnology 2006, 17, 1580-1583.

Nano Research
Pages 2852-2861
Cite this article:
Otnes G, Heurlin M, Graczyk M, et al. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Research, 2016, 9(10): 2852-2861. https://doi.org/10.1007/s12274-016-1165-z

740

Views

56

Crossref

N/A

Web of Science

54

Scopus

0

CSCD

Altmetrics

Received: 10 May 2016
Accepted: 01 June 2016
Published: 15 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return