AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chirality recognition in concerted proton transfer process for prismatic water clusters

Bo Wang1,2Wanrun Jiang1,2Yang Gao1,2Boon K. Teo3,4( )Zhigang Wang1,2,5( )
Institute of Atomic and Molecular PhysicsJilin UniversityChangchun130012China
Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy (Jilin University)Changchun130012China
College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
Beijing Computational Science Research CenterBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Proton transfer and chiral conversion via hydrogen bonds (HBs) are important processes in applications such as chiral recognition, enzymatic catalysis, and drug preparation. Herein, we investigate the chiral conversion and interlayer recognition, via concerted intralayer proton transfer (CIPT) processes, of small prismatic water clusters, in the form of bilayer n-membered water rings (BnWRs, n = 4, 5, 6). Density functional theory (DFT) calculations show that despite the small energy variations between the initial and final states of the clusters of less than 0.3 kcal·mol-1, the vibrational circular dichroism (VCD) spectrum provides clear chiral recognition peaks in the range of 3, 000 to 3, 500 cm-1. The vibrational modes in this region correspond to stretching of intralayer HBs, which produces strong signals in the infrared (IR) and Raman spectra. The electronic circular dichroism (ECD) spectrum also reveals obvious chiroptical characteristics. The molecular orbitals involved in the interlayer interaction are dominated by O 2p atomic orbitals; the energy of these orbitals increased by up to 0.1 eV as a result of the CIPT processes, indicating corresponding recognition between monolayer water clusters. In addition, isotopic substitution by deuterium in the BnWRs results in characteristic peaks in the VCD spectra that can be used as fingerprints in the identification of the chiral structures. Our findings provide new insights into the mechanism of chiral recognition in small prismatic water clusters at the atomic level as well as incentives for future experimental studies.

Electronic Supplementary Material

Download File(s)
nr-9-9-2782_ESM.pdf (7.4 MB)

References

1

Dolamic, I.; Varnholt, B.; Bürgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6, 7117.

2

Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem., Int. Ed. 1995, 34, 1143–1170.

3

Salem, L.; Chapuisat, X.; Segal, G.; Hiberty, P. C.; Minot, C.; Leforestier, C.; Sautet, P. Chirality forces. J. Am. Chem. Soc. 1987, 109, 2887–2894.

4

Bove, L. E.; Klotz, S.; Paciaroni, A.; Sacchetti, F. Anomalous proton dynamics in ice at low temperatures. Phys. Rev. Lett. 2009, 103, 165901.

5

Liedl, K. R.; Sekušak, S.; Kroemer, R. T.; Rode, B. M. New insights into the dynamics of concerted proton tunneling in cyclic water and hydrogen fluoride clusters. J. Phys. Chem. A 1997, 101, 4707–4716.

6

Pugliano, N.; Saykally, R. J. Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. Science 1992, 257, 1937–1940.

7

Meng, X. Z.; Guo, J.; Peng, J. B.; Chen, J.; Wang, Z. C.; Shi, J. R.; Li, X. Z.; Wang, E. G.; Jiang, Y. Direct visualization of concerted proton tunnelling in a water nanocluster. Nat. Phys. 2015, 11, 235–239.

8

Drechsel-Grau, C.; Marx, D. Tunnelling in chiral water clusters: Protons in concert. Nat. Phys. 2015, 11, 216–218.

9

Mohammed, O. F.; Pines, D.; Dreyer, J.; Pines, E.; Nibbering, E. T. J. Sequential proton transfer through water bridges in acid-base reactions. Science 2005, 310, 83–86.

10

Inaba, S. Theoretical study of water cluster catalyzed decomposition of formic acid. J. Phys. Chem. A 2014, 118, 3026–3038.

11

Lutz, S.; Tubert-Brohman, I.; Yang, Y. G.; Meuwly, M. Water-assisted proton transfer in ferredoxin I. J. Biol. Chem. 2011, 286, 23679–23687.

12

Li, L.; Kumar, M.; Zhu, C. Q.; Zhong, J.; Francisco, J. S.; Zeng, X. C. Near-barrierless ammonium bisulfate formation via a loop-structure promoted proton-transfer mechanism on the surface of water. J. Am. Chem. Soc. 2016, 138, 1816–1819.

13

Tachikawa, H.; Takada, T. Proton transfer rates in ionized water clusters (H2O)n (n = 2–4). RSC Adv. 2015, 5, 6945–6953.

14

Herr, J. D.; Talbot, J.; Steele, R. P. Structural progression in clusters of ionized water, (H2O)n = 1–5+. J. Phys. Chem. A 2015, 119, 752–766.

15

Xantheas, S. S. Ab initio studies of cyclic water clusters (H2O)n, n=1–6. Ⅱ. Analysis of many-body interactions. J. Chem. Phys. 1994, 100, 7523–7534.

16

Temelso, B.; Archer, K. A.; Shields, G. C. Benchmark structures and binding energies of small water clusters with anharmonicity corrections. J. Phys. Chem. A 2011, 115, 12034–12046.

17

Bryantsev, V. S.; Diallo, M. S.; van Duin, A. C. T.; Goddard Ⅲ, W. A. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chem. Theory Comput. 2009, 5, 1016–1026.

18

Lee, H. M.; Suh, S. B.; Lee, J. Y.; Tarakeshwar, P.; Kim, K. S. Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 2000, 112, 9759–9772.

19

Contreras-García, J.; Yang, W. T.; Johnson, E. R. Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions. J. Phys. Chem. A 2011, 115, 12983–12990.

20

Wang, B.; Xin, M. S.; Dai, X.; Song, R. X.; Meng, Y.; Han, J.; Jiang, W. R.; Wang, Z. G.; Zhang, R. -Q. Electronic delocalization in small water rings. Phys. Chem. Chem. Phys. 2015, 17, 2987–2990.

21

Guo, J.; Meng, X. Z.; Chen, J.; Peng, J. B.; Sheng, J. M.; Li, X. Z.; Xu, L. M.; Shi, J. -R.; Wang, E. G.; Jiang, Y. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 2014, 13, 184–189.

22

Shchyrba, A.; Nguyen, M. T.; Wäckerlin, C.; Martens, S.; Nowakowska, S.; Ivas, T.; Roose, J.; Nijs, T.; Boz, S.; Schär, M. et al. Chirality transfer in 1D self-assemblies: Influence of H-bonding vs metal coordination between dicyano [7] helicene enantiomers. J. Am. Chem. Soc. 2013, 135, 15270–15273.

23

Crassous, J. Transfer of chirality from ligands to metal centers: Recent examples. Chem. Commum. 2012, 48, 9687–9695.

24

Kühnle, A.; Linderoth, T. R.; Hammer, B.; Besenbacher, F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature 2002, 415, 891–893.

25

Merten, C.; Xu, Y. J. Chirality transfer in a methyl lactateammonia complex observed by matrix-isolation vibrational circular dichroism spectroscopy. Angew. Chem. 2013, 125, 2127–2130.

26

Kurouski, D.; Handen, J. D.; Dukor, R. K.; Nafie, L. A.; Lednev, I. K. Supramolecular chirality in peptide microcrystals. Chem. Commun. 2015, 51, 89–92.

27

Vázquez-Nakagawa, M.; Rodríguez-Pérez, L.; Herranz, M. A.; Martín, N. Chirality transfer from graphene quantum dots. Chem. Commun. 2016, 52, 665–668.

28

Pescitelli, G.; Di Bari, L.; Berova, N. Application of electronic circular dichroism in the study of supramolecular systems. Chem. Soc. Rev. 2014, 43, 5211–5233.

29

Magyarfalvi, G.; Tarczay, G.; Vass, E. Vibrational circular dichroism. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 403–425.

30

Losada, M.; Xu, Y. J. Chirality transfer through hydrogenbonding: Experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water. Phys. Chem. Chem. Phys. 2007, 9, 3127–3135.

31

Sadlej, J.; Dobrowolski, J. C.; Rode, J. E. VCD spectroscopy as a novel probe for chirality transfer in molecular interactions. Chem. Soc. Rev. 2010, 39, 1478–1488.

32

Xu, R. L.; Liu, J.; Chen, F.; Liu, N. H.; Cai, Y. X.; Liu, X. Q.; Song, X.; Dong, M. D.; Wang, L. Room-temperature tracking of chiral recognition process at the single-molecule level. Nano Res. 2015, 8, 3505–3511.

33

Fu, Y. Z.; Han, Q.; Chen, Q.; Wang, Y. H.; Zhou, J.; Zhang, Q. A new strategy for chiral recognition of amino acids. Chem. Commun. 2012, 48, 2322–2324.

34

Fusè, M.; Mazzeo, G.; Longhi, G.; Abbate, S.; Zerla, D.; Rimoldi, I.; Alessandro, C.; Cesarotti, E. VCD spectroscopy as an excellent probe of chiral metal complexes containing a carbon monoxide vibrational chromophore. Chem. Commun. 2015, 51, 9385–9387.

35

Dahlke, E. E.; Truhlar, D. G. Improved density functionals for water. J. Phys. Chem. B 2005, 109, 15677–15683.

36

Elgabarty, H.; Khaliullin, R. Z.; Kuhne, T. D. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments. Nat. Commun. 2015, 6, 8318.

37

Wang, B.; Wang, L.; Dai, X.; Gao, Y.; Jiang, W. R.; Han, J.; Wang, Z. G.; Zhang, R. -Q. Correlation between electron delocalization and structural planarization in small water rings. Int. J. Quantum Chem. 2015, 115, 817–819.

38

Drechsel-Grau, C.; Marx, D. Quantum simulation of collective proton tunneling in hexagonal ice crystals. Phys. Rev. Lett. 2014, 112, 148302.

39

Merte, L. R.; Bechstein, R.; Peng, G. W.; Rieboldt, F.; Farberow, C. A.; Zeuthen, H.; Knudsen, J.; Laegsgaard, E.; Wendt, S.; Mavrikakis, M. et al. Water clustering on nanostructured iron oxide films. Nat. Commun. 2014, 5, 4193.

40

Falenty, A.; Hansen, T. C.; Kuhs, W. F. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 2014, 516, 231–233.

41

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

42

Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.

43

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

44

Li, F. Y.; Wang, L.; Zhao, J. J.; Xie, J. R. H.; Riley, K. E.; Chen, Z. F. What is the best density functional to describe water clusters: Evaluation of widely used density functionals with various basis sets for (H2O)n (n = 1–10). Theor. Chem. Acc. 2011, 130, 341–352.

45

Santra, B.; Michaelides, A.; Fuchs, M.; Tkatchenko, A.; Filippi, C.; Scheffler, M. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. Ⅱ. The water hexamer and van der Waals interactions. J. Chem. Phys. 2008, 129, 194111.

46

Wang, L.; Ceriotti, M.; Markland, T. E. Quantum fluctuations and isotope effects in ab initio descriptions of water. J. Chem. Phys. 2014, 141, 104502.

47

Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206.

48

Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

49

Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

50

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D. 01; Gaussian, Inc. : Wallingford, CT, 2009.

51

Su, J. T.; Xu, X.; Goddard Ⅲ, W. A. Accurate energies and structures for large water clusters using the X3LYP hybrid density functional. J. Phys. Chem. A 2004, 108, 10518–10526.

52

Qian, P.; Song, W.; Lu, L.; Yang, Z. Z. Ab initio investigation of water clusters (H2O)n (n = 2–34). Int. J. Quantum Chem. 2010, 110, 1923–1937.

53

Miliordos, E.; Xantheas, S. S. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H2O)m, m = 2-6, 8, 11, 16, and 17. J. Chem. Phys. 2015, 142, 234303.

54

Wang, Y. M.; Babin, V.; Bowman, J. M.; Paesani, F. The water hexamer: Cage, prism, or both. Full dimensional quantum simulations say both. J. Am. Chem. Soc. 2012, 134, 11116–11119.

55

Saykally, R. J.; Wales, D. J. Pinning down the water hexamer. Science 2012, 336, 814–815.

56

Buck, U.; Ettischer, I.; Melzer, M.; Buch, V.; Sadlej, J. Structure and spectra of three-dimensional (H2O)n clusters, n = 8, 9, 10. Phys. Rev. Lett. 1998, 80, 2578–2581.

57

Shields, R. M.; Temelso, B.; Archer, K. A.; Morrell, T. E.; Shields, G. C. Accurate predictions of water cluster formation, (H2O)n=2–10. J. Phys. Chem. A 2010, 114, 11725–11737.

58

Pérez, C.; Muckle, M. T.; Zaleski, D. P.; Seifert, N. A.; Temelso, B.; Shields, G. C.; Kisiel, Z.; Pate, B. H. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 2012, 336, 897–901.

59

Lagutschenkov, A.; Fanourgakis, G. S.; Niedner-Schatteburg, G.; Xantheas, S. S. The spectroscopic signature of the "all-surface" to "internally solvated" structural transition in water clusters in the n = 17–21 size regime. J. Chem. Phys. 2005, 122, 194310.

60

Welch, W. R. W.; Kubelka, J.; Keiderling, T. A. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory. J. Phys. Chem. B 2013, 117, 10343–10358.

61

Shao, M.; Keum, J.; Chen, J. H.; He, Y. J.; Chen, W.; Browning, J. F.; Jakowski, J.; Sumpter, B. G.; Ivanov, I. N.; Ma, Y. Z. et al. The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nat. Commun. 2014, 5, 3180.

62

Sun, C. Q.; Zhang, X.; Zhou, J.; Huang, Y. L.; Zhou, Y. C.; Zheng, W. T. Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 2013, 4, 2565–2570.

63

Tantirungrotechai, Y.; Phanasant, K.; Roddecha, S.; Surawatanawong, P.; Sutthikhum, V.; Limtrakul, J. Scaling factors for vibrational frequencies and zero-point vibrational energies of some recently developed exchange-correlation functionals. J. Mol. Struc. : THEOCHEM 2006, 760, 189–192.

64

Merrick, J. P.; Moran, D.; Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 2007, 111, 11683–11700.

65

Leang, S. S.; Zahariev, F.; Gordon, M. S. Benchmarking the performance of time-dependent density functional methods. J. Chem. Phys. 2012, 136, 104101.

66

Furukawa, H.; Gá ndara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.

67

Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.

68

Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315.

69

Song, F. J.; Wang, C.; Falkowski, J. M.; Ma, L. Q.; Lin, W. B. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: Tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc. 2010, 132, 15390–15398.

70

Zhang, J.; Yao, Y. G.; Bu, X. H. Comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid. Chem. Mater. 2007, 19, 5083–5089.

71

Benoit, M.; Marx, D.; Parrinello, M. Tunnelling and zeropoint motion in high-pressure ice. Nature 1998, 392, 258–261.

72

Guo, J.; Lü, J. T.; Feng, Y. X.; Chen, J.; Peng, J. B.; Lin, Z. R.; Meng, X. Z.; Wang, Z. C.; Li, X. Z.; Wang, E. G. et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 2016, 352, 321–325.

73

Ho, W. Single-molecule chemistry. J. Chem. Phys. 2002, 117, 11033–11061.

74

Gawronski, H.; Carrasco, J.; Michaelides, A.; Morgenstern, K. Manipulation and control of hydrogen bond dynamics in absorbed ice nanoclusters. Phys. Rev. Lett. 2008, 101, 136102.

75

Zhang, Q. F.; Wahnström, G.; Björketun, M. E.; Gao, S. W.; Wang, E. G. Path integral treatment of proton transport processes in BaZrO3. Phys. Rev. Lett. 2008, 101, 215902.

76

Brown-Xu, S. E.; Chisholm, M. H.; Durr, C. B.; Lewis, S. A.; Spilker, T. F.; Young, P. J. Molybdenum–molybdenum quadruple bonds supported by 9, 10-anthraquinone carboxylate ligands. Molecular, electronic, ground state and unusual photoexcited state properties. Chem. Sci. 2014, 5, 2657–2666.

77

Cotton, F. A.; Feng, X. J.; Matusz, M.; Poli, R. Experimental and theoretical studies of the copper(Ⅰ) and silver(Ⅰ) dinuclear N, N′-di-p-tolylformamidinato complexes. J. Am. Chem. Soc. 1988, 110, 7077–7083.

78

Repp, J.; Meyer, G.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: Scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.

79

Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Real-space identification of intermolecular bonding with atomic force microscopy. Science 2013, 342, 611–614.

Nano Research
Pages 2782-2795
Cite this article:
Wang B, Jiang W, Gao Y, et al. Chirality recognition in concerted proton transfer process for prismatic water clusters. Nano Research, 2016, 9(9): 2782-2795. https://doi.org/10.1007/s12274-016-1167-x

721

Views

16

Crossref

N/A

Web of Science

16

Scopus

2

CSCD

Altmetrics

Received: 23 March 2016
Revised: 31 May 2016
Accepted: 31 May 2016
Published: 03 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return