Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article

A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials

Muhammad-Sadeeq Balogun1,3Weitao Qiu1Yang Luo1Hui Meng2Wenjie Mai2()Amos Onasanya3Titus K. Olaniyi3Yexiang Tong1,4()
MOE of the Key Laboratory of Bioinorganic and Synthetic ChemistryKLGHEI of Environment and Energy ChemistryThe Key Lab of Low-carbon Chem & Energy Conservation of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSun Yat-Sen UniversityGuangzhou510275China
Department of Physics and Siyuan LaboratoryJinan UniversityGuangzhou510632China
College of Sciences and College of EngineeringAfe Babalola UniversityAdo EkitiEkiti State36010Nigeria
Department of ChemistryShantou UniversityShantou515063China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Lithium-ion batteries have emerged as the best portable energy storage device for the consumer electronics market. Recent progress in the development of lithiumion batteries has been achieved by the use of selected anode materials, which have driven improvements in performance in terms of capacity, cyclic stability, and rate capability. In this regard, research focusing on the design and electrochemical performance of full cell lithium-ion batteries, utilizing newly developed anode materials, has been widely reported, and great strides in development have been made. Nanostructured anode materials have contributed largely to the development of full cell lithium-ion batteries. With this in mind, we summarize the impact of nanostructured anode materials in the performance of coin cell full lithium-ion batteries. This review also discusses the challenges and prospects of research into full cell lithium-ion batteries.

References

1

Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053-1061.

2

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

3

Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160-2181.

4

Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291-312.

5

Tarascon, J. -M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

6

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

7

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

8

Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909-7937.

9

Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977-980.

10

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828-11862.

11

Wang, Z. -L.; Xu, D.; Wang, H. -G.; Wu, Z.; Zhang, X. -B. In situ fabrication of porous graphene electrodes for high- performance energy storage. ACS Nano 2013, 7, 2422-2430.

12

Huang, X. -L.; Chai, J.; Jiang, T.; Wei, Y. -J.; Chen, G.; Liu, W. -Q.; Han, D. X.; Niu, L.; Wang, L. M.; Zhang, X. -B. Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures toward enhanced energy storage. J. Mater. Chem. 2012, 22, 3404-3410.

13

Huang, X. -L.; Zhao, X.; Wang, Z. -L.; Wang, L. -M.; Zhang, X. -B. Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 3764-3769.

14

Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245-4270.

15

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.

16

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.

17

Balogun, M. -S.; Qiu, W. T.; Wang, W.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Recent advances in metal nitrides as high- performance electrode materials for energy storage devices. J. Mater. Chem. A 2015, 3, 1364-1387.

18

Huang, Y. C.; Long, B.; Tang, M. N.; Rui, Z. B.; Balogun, M. -S.; Tong, Y. X.; Ji, H. B. Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B-Environ. 2016, 181, 779-787.

19

Jayaraman, S.; Aravindan, V.; Ulaganathan, M.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Ultralong durability of porous α-Fe2O3 nanofibers in practical Li-ion configuration with LiMn2O4 cathode. Adv. Sci. 2015, 2, DOI: 10.1002/advs.201500050.

20

Fan, X. L.; Shao, J.; Xiao, X. Z.; Chen, L. X.; Wang, X. H.; Li, S. Q.; Ge, H. W. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 14641-14648.

21

Huang, Y.; Huang, X. -L.; Lian, J. -S.; Xu, D.; Wang, L. -M.; Zhang, X. -B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844-2847.

22

Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345-4353.

23

Wang, H. G.; Ma, D. L.; Huang, X. L.; Huang, Y.; Zhang, X. B. General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 2012, 2, 701.

24

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252-264.

25

Wagemaker, M.; Mulder, F. M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2013, 46, 1206-1215.

26

Roy, P.; Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454-2484.

27

Dai, K.; Lu, L. H.; Liang, C. H.; Dai, J. M.; Liu, Q. Z.; Zhang, Y. X.; Zhu, G. P.; Liu, Z. L. In situ assembly of MnO2 nanowires/graphene oxide nanosheets composite with high specific capacitance. Electrochim. Acta 2014, 116, 111-117.

28

Zhang, W. X.; Ma, G.; Gu, H. Y.; Yang, Z. H.; Cheng, H. A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0.5Mn1.5O4 cathode. J. Power Sources 2015, 273, 561-565.

29

Aravindan, V.; Lee, Y. -S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.

30

Ulaganathan, M.; Aravindan, V.; Yan, Q. Y.; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T. M. Recent advancements in all-vanadium redox flow batteries. Adv. Mater. Interfaces 2016, 3, DOI: 10.1002/admi.201500309.

31

Zhang, P. F.; Zhao, L. Z.; An, Q. Y.; Wei, Q. L.; Zhou, L.; Wei, X. J.; Sheng, J. Z.; Mai, L. Q. A high-rate V2O5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell. Small 2016, 12, 1082-1090.

32

Gwon, H.; Hong, J.; Kim, H.; Seo, D. -H.; Jeon, S.; Kang, K. Recent progress on flexible lithium rechargeable batteries. Energy Environ. Sci. 2014, 7, 538-551.

33

Zhou, G. M.; Li, F.; Cheng, H. -M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307-1338.

34

Hu, Y. H.; Sun, X. L. Flexible rechargeable lithium ion batteries: Advances and challenges in materials and process technologies. J. Mater. Chem. A 2014, 2, 10712-10738.

35

Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274-290.

36

Li, W. W.; Gan, L.; Guo, K.; Ke, L. B.; Wei, Y. Q.; Li, H. Q.; Shen, G. Z.; Zhai, T. Y. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. Nanoscale 2016, 8, 8666-8672.

37

Balogun, M. -S.; Zhu, Y. K.; Qiu, W. T.; Luo, Y.; Huang, Y. C.; Liang, C. L.; Lu, X. H.; Tong, Y. X. Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 25991-26003.

38

Balogun, M. -S.; Li, C.; Zeng, Y. X.; Yu, M. H.; Wu, Q. L.; Wu, M. M.; Lu, X. H.; Tong, Y. X. Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J. Power Sources 2014, 272, 946-953.

39

Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005-3011.

40

Fang, X.; Shen, C. F.; Ge, M. Y.; Rong, J. P.; Liu, Y. H.; Zhang, A. Y.; Wei, F.; Zhou, C. W. High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film. Nano Energy 2015, 12, 43-51.

41

Zhu, J.; Chen, L. B.; Xu, Z.; Lu, B. G. Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy 2015, 12, 339-346.

42

Balogun, M. -S.; Wu, Z. P.; Luo, Y.; Qiu, W. T.; Fan, X. L.; Long, B.; Huang, M.; Liu, P.; Tong, Y. X. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. J. Power Sources 2016, 308, 7-17.

43

Qiu, W. T.; Balogun, M. -S.; Luo, Y.; Chen, K. Q.; Zhu, Y. K.; Xiao, X. J.; Lu, X. H.; Liu, P.; Tong, Y. X. Three- dimensional Fe3O4 nanotube array on carbon cloth prepared from a facile route for lithium ion batteries. Electrochim. Acta 2016, 193, 32-38.

44

Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100-104.

45

Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763-4782.

46

Han, J. -T.; Goodenough, J. B. 3-V full cell performance of anode framework TiNb2O7/spinel LiNi0.5Mn1.5O4. Chem. Mater. 2011, 23, 3404-3407.

47

Kumar Sen, U.; Shaligram, A.; Mitra, S. Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Appl. Mater. Interfaces 2014, 6, 14311-14319.

48

Xu, G. -L.; Xu, Y. -F.; Fang, J. -C.; Fu, F.; Sun, H.; Huang, L.; Yang, S. H.; Sun, S. -G. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O4-δ lithium ion battery. ACS Appl. Mater. Interfaces 2013, 5, 6316-6323.

49

Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4. Phys. Chem. Chem. Phys. 2013, 15, 2945-2953.

50

Cheah, Y. L.; Aravindan, V.; Madhavi, S. Synthesis and enhanced lithium storage properties of electrospun V2O5 nanofibers in full-cell assembly with a spinel Li4Ti5O12 anode. ACS Appl. Mater. Interfaces 2013, 5, 3475-3480.

51

Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013-4023.

52

Débart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266-A1274.

53

Andersson, A. S.; Thomas, J. O. The source of first-cycle capacity loss in LiFePO4. J. Power Sources 2001, 97-98, 498-502.

54

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4302.

55

Chao, D. L.; Xia, X. H.; Liu, J. L.; Fan, Z. X.; Ng, C. F.; Lin, J. Y.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/conductive-polymer core/shell nanobelt array on three- dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794-5800.

56

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364-5457.

57

Simões, M.; Surace, Y.; Yoon, S.; Battaglia, C.; Pokrant, S.; Weidenkaff, A. Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries. J. Power Sources 2015, 291, 66-74.

58

Chen, J. S.; Lou, X. W. D. SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 2013, 9, 1877-1893.

59

Li, G. -R.; Xu, H.; Lu, X. -F.; Feng, J. -X.; Tong, Y. -X.; Su, C. -Y. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 2013, 5, 4056-4069.

60

Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724-803.

61

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45-58.

62

Palacín, M. R. Recent advances in rechargeable battery materials: A chemist's perspective. Chem. Soc. Rev. 2009, 38, 2565-2575.

63

Guo, J. L.; Liu, J. P. Topotactic conversion-derived Li4Ti5O12- rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells. RSC Adv. 2014, 4, 12950-12957.

64

Zeng, Y. X.; Han, Y.; Zhao, Y. T.; Zeng, Y.; Yu, M. H.; Liu, Y. J.; Tang, H. L.; Tong, Y. X.; Lu, X. H. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv. Energy Mater. 2015, 5, 1402176.

65

Balogun, M. -S.; Yu, M. H.; Li, C.; Zhai, T.; Liu, Y.; Lu, X. H.; Tong, Y. X. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 10825-10829.

66

Lu, X. -F.; Chen, X. -Y.; Zhou, W.; Tong, Y. -X.; Li, G. -R. α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 14843-14850.

67

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

68

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271-279.

69

Yu, M. H.; Qiu, W. T.; Wang, F. X.; Zhai, T.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Three dimensional architectures: Design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 2015, 3, 15792-15823.

70

Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368-3397.

71

Chae, C.; Noh, H. J.; Lee, J. K.; Scrosati, B.; Sun, Y. K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 2014, 24, 3036-3042.

72

Duan, W. C.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale 2013, 5, 6485-6490.

73

Balogun, M. -S.; Qiu, W. T.; Jian, J. H.; Huang, Y. C.; Luo, Y.; Yang, H.; Liang, C. L.; Lu, X. H.; Tong, Y. X. Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 23205-23215.

74

Chao, D. L.; Zhu, C. R.; Xia, X. H.; Liu, J. L.; Zhang, X.; Wang, J.; Liang, P.; Lin, J. Y.; Zhang, H.; Shen, Z. X. et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 2015, 15, 565-573.

75

Kim, T. -H.; Park, J. -S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. -K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860-872.

76

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. D. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488-1504.

77

Luo, Y.; Balogun, M. -S.; Qiu, W. T.; Zhao, R. R.; Liu, P.; Tong, Y. X. Sulfurization of FeOOH nanorods on a carbon cloth and their conversion into Fe2O3/Fe3O4-S core-shell nanorods for lithium storage. Chem. Commun. 2015, 51, 13016-13019.

78

Balogun, M. -S.; Yu, M. H.; Huang, Y. C.; Li, C.; Fang, P. P.; Liu, Y.; Lu, X. H.; Tong, Y. X. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 2015, 11, 348-355.

79

Balogun, M. -S.; Zeng, Y. X.; Qiu, W. T.; Luo, Y.; Onasanya, A.; Olaniyi, T.; Tong, Y. X. Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrode for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2016, 4, 9844-9849.

80

Qiu, W. D.; Jiao, J. Q.; Xia, J.; Zhong, H. M.; Chen, L. P. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries. Chem-Eur. J. 2015, 21, 4359-4367.

81

Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209-231.

82

Plichta, E. J.; Behl, W. K. The rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte. J. Electrochem. Soc. 1993, 140, 46-49.

83

Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932-4937.

84

Wang, Y.; Lee, J. Y. One-step, confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage. Angew. Chem., Int. Ed. 2006, 45, 7039-7042.

85

Wang, Y.; Wu, M. H.; Jiao, Z.; Lee, J. Y. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 2009, 21, 3210-3215.

86

Kennedy, T.; Brandon, M.; Ryan, K. M. Advances in the application of silicon and germanium nanowires for high- performance lithium-ion batteries. Adv. Mater. , in press, DOI: 10.1002/adma.201503978.

87

Yazami, R.; Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 1983, 9, 365-371.

88

Wu, Y. P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power Sources 2003, 114, 228-236.

89

Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165-180.

90

Yang, L. J.; Cheng, X. Q.; Gao, Y. Z.; Zuo, P. J.; Ma, Y. L.; Du, C. Y.; Shen, B.; Cui, Y. Z.; Guan, T.; Yin, G. P. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling. ACS Appl. Mater. Interfaces 2014, 6, 12962-12970.

91

Sun, H.; He, X. M.; Ren, J. G.; Li, J. J.; Jiang, C. Y.; Wan, C. R. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochim. Acta 2007, 52, 4312-4316.

92

Sun, H.; He, X. M.; Li, J. J.; Ren, J. G.; Jiang, C. Y.; Wan, C. R. Hard carbon/Li2.6Co0.4N composite anode materials for Li-ion batteries. Solid State Ionics 2006, 177, 1331-1334.

93

Sun, Y. Z.; Ning, G. Q.; Qi, C. L.; Li, J. C.; Ma, X. L.; Xu, C. G.; Li, Y. F.; Zhang, X.; Gao, J. S. An advanced lithium ion battery based on a sulfur-doped porous carbon anode and a lithium iron phosphate cathode. Electrochim. Acta 2016, 190, 141-149.

94

McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. D. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources 1999, 81-82, 20-26.

95

Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67-86.

96

Dahn, J. R.; Sleigh, A. K.; Shi, H.; Reimers, J. N.; Zhong, Q.; Way, B. M. Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochim. Acta 1993, 38, 1179-1191.

97

Menachem, C.; Peled, E.; Burstein, L.; Rosenberg, Y. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. J. Power Sources 1997, 68, 277-282.

98

Qian, G. N.; Wang, L.; Shang, Y. M.; He, X. M.; Tang, S. F.; Liu, M.; Li, T. W.; Zhang, G. Q.; Wang, J. L. Polyimide binder: A facile way to improve safety of lithium ion batteries. Electrochim. Acta 2016, 187, 113-118.

99

Hwang, G.; Kim, J. -M.; Hong, D.; Kim, C. -K.; Choi, N. -S.; Lee, S. -Y.; Park, S. Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries. Green Chem. 2016, 18, 2710-2716.

100

Menachem, C.; Wang, Y.; Flowers, J.; Peled, E.; Greenbaum, S. G. Characterization of lithiated natural graphite before and after mild oxidation. J. Power Sources 1998, 76, 180-185.

101

Khomenko, V. G.; Barsukov, V. Z.; Doninger, J. E.; Barsukov, I. V. Lithium-ion batteries based on carbon- silicon-graphite composite anodes. J. Power Sources 2007, 165, 598-608.

102

Shim, J.; Striebel, K. A. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. J. Power Sources 2003, 119-121, 955-958.

103

Rana, K.; Kim, S. D.; Ahn, J. -H. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries. Nanoscale 2015, 7, 7065-7071.

104

Zhai, T.; Lu, X. H.; Wang, H. Y.; Wang, G. M.; Mathis, T.; Liu, T. Y.; Li, C.; Tong, Y. X.; Li, Y. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett. 2015, 15, 3189-3194.

105

Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157-3180.

106

Vargas, Ó.; Caballero, Á.; Morales, J. Deficiencies of chemically reduced graphene as electrode in full Li-ion cells. Electrochim. Acta 2015, 165, 365-371.

107

Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901-4906.

108

Vargas, Ó.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 3290-3298.

109

Vargas, Ó.; Caballero, Á.; Morales, J.; Elia, G. A.; Scrosati, B.; Hassoun, J. Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Phys. Chem. Chem. Phys. 2013, 15, 20444-20446.

110

Khomenko, V. G.; Barsukov, V. Z. Characterization of silicon- and carbon-based composite anodes for lithium-ion batteries. Electrochim. Acta 2007, 52, 2829-2840.

111

Park, C. -M.; Kim, J. -H.; Kim, H.; Sohn, H. -J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115-3141.

112

Hwang, J.; Jo, C.; Kim, M. G.; Chun, J.; Lim, E.; Kim, S.; Jeong, S.; Kim, Y.; Lee, J. Mesoporous Ge/GeO2/carbon lithium-ion battery anodes with high capacity and high reversibility. ACS Nano 2015, 9, 5299-5309.

113

Huang, Y. L.; Hou, X. H.; Fan, X. Y.; Ma, S. M.; Hu, S. J.; Lam, K. -H. Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 2015, 182, 1175-1187.

114

Eom, K.; Jung, J.; Lee, J. T.; Lair, V.; Joshi, T.; Lee, S. W.; Lin, Z. Q.; Fuller, T. F. Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy 2015, 12, 314-321.

115

Peled, E.; Patolsky, F.; Golodnitsky, D.; Freedman, K.; Davidi, G.; Schneier, D. Tissue-like silicon nanowires- based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett. 2015, 15, 3907-3916.

116

Di Lecce, D.; Brutti, S.; Panero, S.; Hassoun, J. A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Mater. Lett. 2015, 139, 329-332.

117

Wang, G.; Wang, H.; Bai, J. T. Preparation and electrochemical evaluation of manganese ferrite spheres as anode materials for half and full lithium-ion batteries. J. Alloy. Compd. 2015, 627, 174-181.

118

Wang, N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126-4133.

119

Li, X. W.; Yang, Z. B.; Fu, Y. J.; Qiao, L.; Li, D.; Yue, H. W.; He, D. Y. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery. ACS Nano 2015, 9, 1858-1867.

120

Brutti, S.; Hassoun, J.; Scrosati, B.; Lin, C. -Y.; Wu, H.; Hsieh, H. -W. A high power Sn-C/C-LiFePO4 lithium ion battery. J. Power Sources 2012, 217, 72-76.

121

Mhamane, D.; Kim, H. -K.; Aravindan, V.; Roh, K. C.; Srinivasan, M.; Kim, K. -B. Rusted iron wire waste into high performance anode (α-Fe2O3) for Li-ion batteries: An efficient waste management approach. Green Chem. 2016, 18, 1395-1404.

122

Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C composite as an advanced anode material in high-performance Lithium-ion batteries. Adv. Mater. 2007, 19, 2336-2340.

123

Elia, G. A.; Nobili, F.; Tossici, R.; Marassi, R.; Savoini, A.; Panero, S.; Hassoun, J. Nanostructured tin-carbon/LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. J. Power Sources 2015, 275, 227-233.

124

Ni, W.; Cheng, J. L.; Shi, L. Y.; Li, X. D.; Wang, B.; Guan, Q.; Huang, L.; Gu, G. F.; Li, H. Integration of Sn/C yolk-shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof. J. Mater. Chem. A 2014, 2, 19122-19130.

125

Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668-674.

126

Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150-7188.

127

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.

128

Sun, W.; Hu, R. Z.; Liu, H.; Zeng, M. Q.; Yang, L. C.; Wang, H. H.; Zhu, M. Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J. Power Sources 2014, 268, 610-618.

129

Eom, K.; Joshi, T.; Bordes, A.; Do, I.; Fuller, T. F. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. J. Power Sources 2014, 249, 118-124.

130

Ji, L. W.; Zheng, H. H.; Ismach, A.; Tan, Z. K.; Xun, S. D.; Lin, E.; Battaglia, V.; Srinivasan, V.; Zhang, Y. G. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy 2012, 1, 164-171.

131

Arun, N.; Aravindan, V.; Jayaraman, S.; Madhavi, S. Unveiling the fabrication of "rocking-chair" type 3.2 and 1.2 V class cells using spinel LiNi0.5Mn1.5O4 as cathode with Li4Ti5O12. J. Phys. Chem. C 2015, 119, 24332-24336.

132

Arun, N.; Aravindan, V.; Jayaraman, S.; Shubha, N.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Exceptional performance of a high voltage spinel LiNi0.5Mn1.5O4 cathode in all one dimensional architectures with an anatase TiO2 anode by electrospinning. Nanoscale 2014, 6, 8926-8934.

133

Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590-12593.

134

Wang, N.; Yue, J.; Chen, L.; Qian, Y. T.; Yang, J. Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10348-10355.

135

Liu, Y.; Elzatahry, A. A.; Luo, W.; Lan, K.; Zhang, P. F.; Fan, J. W.; Wei, Y.; Wang, C.; Deng, Y. H.; Zheng, G. F. et al. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 2016, 25, 80-90.

136

Dylla, A. G.; Henkelman, G.; Stevenson, K. J. Lithium insertion in nanostructured TiO2(B) architectures. Acc. Chem. Res. 2013, 46, 1104-1112.

137

Wang, Y. -Q.; Gu, L.; Guo, Y. -G.; Li, H.; He, X. -Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. -J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874-7879.

138

Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z. et al. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 126, 13706-13710.

139

Fröschl, T.; Hörmann, U.; Kubiak, P.; Kučerová, G.; Pfanzelt, M.; Weiss, C. K.; Behm, R. J.; Hüsing, N.; Kaiser, U.; Landfester, K. et al. High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev. 2012, 41, 5313-5360.

140

Myung, S. -T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S. -J.; Sun, Y. -K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609-2614.

141

Han, H.; Song, T.; Bae, J. -Y.; Nazar, L. F.; Kim, H.; Paik, U. Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ. Sci. 2011, 4, 4532-4536.

142

Fehse, M.; Cavaliere, S.; Lippens, P. E.; Savych, I.; Iadecola, A.; Monconduit, L.; Jones, D. J.; Rozière, J.; Fischer, F.; Tessier, C. et al. Nb-doped TiO2 nanofibers for lithium ion batteries. J. Phys. Chem. C 2013, 117, 13827-13835.

143

Petkovich, N. D.; Wilson, B. E.; Rudisill, S. G.; Stein, A. Titania-carbon nanocomposite anodes for lithium ion batteries-effects of confined growth and phase synergism. ACS Appl. Mater. Interfaces 2014, 6, 18215-18227.

144

Song, T.; Han, H.; Choi, H.; Lee, J. W.; Park, H.; Lee, S.; Park, W.; Kim, S.; Liu, L.; Paik, U. TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 2014, 7, 491-501.

145

Plylahan, N.; Letiche, M.; Barr, M. K. S.; Ellis, B.; Maria, S.; Phan, T. N. T.; Bloch, E.; Knauth, P.; Djenizian, T. High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. J. Power Sources 2015, 273, 1182-1188.

146

Takami, N.; Harada, Y.; Iwasaki, T.; Hoshina, K.; Yoshida, Y. Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J. Power Sources 2015, 273, 923-930.

147

Xin, X.; Zhou, X. F.; Wu, J. H.; Yao, X. Y.; Liu, Z. P. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 2012, 6, 11035-11043.

148

Zhang, X.; Aravindan, V.; Kumar, P. S.; Liu, H.; Sundaramurthy, J.; Ramakrishna, S.; Madhavi, S. Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nanoscale 2013, 5, 5973-5980.

149

Plylahan, N.; Letiche, M.; Barr, M. K. S.; Djenizian, T. All-solid-state lithium-ion batteries based on self-supported titania nanotubes. Electrochem. Commun. 2014, 43, 121-124.

150

Kumar, P. S.; Aravindan, V.; Sundaramurthy, J.; Thavasi, V.; Mhaisalkar, S. G.; Ramakrishna, S.; Madhavi, S. High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode. RSC Adv. 2012, 2, 7983-7987.

151

Game, O.; Kumari, T.; Singh, U.; Aravindan, V.; Madhavi, S.; Ogale, S. B. (001) faceted mesoporous anatase TiO2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn2O4. Energy Stor. Mater. 2016, 3, 106-112.

152

Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 2006, 18, 2597-2600.

153

Ming, H.; Ming, J.; Oh, S. -M.; Lee, E. -J.; Huang, H.; Zhou, Q.; Zheng, J. W.; Sun, Y. -K. High dispersion of TiO2 nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi0.5Mn1.5O4. J. Mater. Chem. A 2014, 2, 18938-18945.

154

Wang, C.; Wu, L. X.; Wang, H.; Zuo, W. H.; Li, Y. Y.; Liu, J. P. Fabrication and shell optimization of synergistic TiO2-MoO3 core-shell nanowire array anode for high energy and power density lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3524-3533.

155

Feckl, J. M.; Fominykh, K.; Döblinger, M.; Fattakhova-Rohlfing, D.; Bein, T. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem., Int. Ed. 2012, 51, 7459-7463.

156

Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502-6506.

157

Park, K. -S.; Benayad, A.; Kang, D. -J.; Doo, S. -G. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J. Am. Chem. Soc. 2008, 130, 14930-14931.

158

Jung, H. -G.; Myung, S. -T.; Yoon, C. S.; Son, S. -B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y. -K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345-1351.

159

Zhu, G. -N.; Wang, Y. -G.; Xia, Y. -Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652-6667.

160

Xiang, H. F.; Zhang, X.; Jin, Q. Y.; Zhang, C. P.; Chen, C. H.; Ge, X. W. Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. J. Power Sources 2008, 183, 355-360.

161

Cui, W.; He, Y. -B.; Tang, Z. -Y.; Yang, Q. -H.; Xu, Q.; Su, F. -Y.; Ma, L. Improvement of overcharge performance using Li4Ti5O12 as negative electrode for LiFePO4 power battery. J. Solid State Electr. 2012, 16, 265-271.

162

Jaiswal, A.; Horne, C. R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M. Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J. Electrochem. Soc. 2009, 156, A1041-A1046.

163

Liu, W.; Chen, Z.; Zhou, G. M.; Sun, Y. M.; Lee, H. R.; Liu, C.; Yao, H. B.; Bao, Z.; Cui, Y. 3D porous sponge- inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 2016, 28, 3578-3583.

164

Wang, W.; Choi, D.; Yang, Z. G. Li-ion battery with LiFePO4 cathode and Li4Ti5O12 anode for stationary energy storage. Metall. Mater. Trans. A 2013, 44, 21-25.

165

Takami, N.; Inagaki, H.; Tatebayashi, Y.; Saruwatari, H.; Honda, K.; Egusa, S. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J. Power Sources 2013, 244, 469-475.

166

Cheah, Y. L.; Aravindan, V.; Madhavi, S. Chemical lithiation studies on combustion synthesized V2O5 cathodes with full cell application for lithium ion batteries. J. Electrochem. Soc. 2013, 160, A1016-A1024.

167

Ni, J. F.; Liu, W.; Liu, J. Z.; Gao, L. J.; Chen, J. T. Investigation on a 3.2 V LiCoPO4/Li4Ti5O12 full battery. Electrochem. Commun. 2013, 35, 1-4.

168

Du, C. Q.; Tang, Z. Y.; Wu, J. W.; Tang, H. Q.; Zhang, X. H. A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material. Electrochim. Acta 2014, 125, 58-64.

169

Du, G. D.; Winton, B. R.; Hashim, I. M.; Sharma, N.; Konstantinov, K.; Reddy, M. V.; Guo, Z. P. Mass production of Li4Ti5O12 with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. RSC Adv. 2014, 4, 38568-38574.

170

Zhu, G. -N.; Chen, L.; Wang, Y. -G.; Wang, C. -X.; Che, R. -C.; Xia, Y. -Y. Binary Li4Ti5O12-Li2Ti3O7 nanocomposite as an anode material for Li-ion batteries. Adv. Funct. Mater. 2013, 23, 640-647.

171

Zhu, G. -N.; Liu, H. -J.; Zhuang, J. -H.; Wang, C. -X.; Wang, Y. -G.; Xia, Y. -Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016-4022.

172

Guo, J. L.; Zou, W. H.; Cai, Y. J.; Chen, S. M.; Zhang, S. J.; Liu, J. P. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. J. Mater. Chem. A 2015, 3, 4938-4944.

173

Jayaraman, S.; Aravindan, V.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Exceptional performance of TiNb2O7 anode in all one-dimensional architecture by electrospinning. ACS Appl. Mater. Interfaces 2014, 6, 8660-8666.

174

Roh, H. -K.; Kim, H. -K.; Roh, K. C.; Kim, K. -B. LiTi2(PO4)3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries. RSC Adv. 2014, 4, 31672-31677.

175

Vidal-Abarca, C.; Lavela, P.; Aragon, M. J.; Plylahan, N.; Tirado, J. L. The influence of iron substitution on the electrochemical properties of Li1+xTi2-xFex(PO4)3/C composites as electrodes for lithium batteries. J. Mater. Chem. 2012, 22, 21602-21607.

176

Aravindan, V.; Chuiling, W.; Madhavi, S. Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode. RSC Adv. 2012, 2, 7534-7539.

177

Han, J. -T.; Huang, Y. -H.; Goodenough, J. B. New anode framework for rechargeable lithium batteries. Chem. Mater. 2011, 23, 2027-2029.

178

Guo, B. K.; Yu, X. Q.; Sun, X. -G.; Chi, M. F.; Qiao, Z. -A.; Liu, J.; Hu, Y. -S.; Yang, X. -Q.; Goodenough, J. B.; Dai, S. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ. Sci. 2014, 7, 2220-2226.

179

Ming, H.; Ming, J.; Oh, S. -M.; Tian, S.; Zhou, Q.; Huang, H.; Sun, Y. -K.; Zheng, J. W. Surfactant-assisted synthesis of Fe2O3 nanoparticles and F-doped carbon modification toward an improved Fe3O4@CFx/LiNi0.5Mn1.5O4 battery. ACS Appl. Mater. Interfaces 2014, 6, 15499-15509.

180

Li, W. H.; Yang, L.; Wang, J. Q.; Xiang, B.; Yu, Y. Three- dimensionally interconnected TaS3 nanowire network as anode for high-performance flexible Li-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 5629-5633.

181

Xiong, P.; Peng, L. L.; Chen, D. H.; Zhao, Y.; Wang, X.; Yu, G. H. Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 2015, 12, 816-823.

182

Wang, Z. Y.; Liu, C. -J. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective. Nano Energy 2015, 11, 277-293.

183

Ming, H.; Ming, J.; Kwak, W. -J.; Yang, W. J.; Zhou, Q.; Zheng, J. W.; Sun, Y. -K. Fluorine-doped porous carbon- decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochim. Acta 2015, 169, 291-299.

184

Liang, C. L.; Huang, S. C.; Zhao, W. X.; Liu, W. Y.; Chen, J.; Liu, H.; Tong, Y. X. Polyhedral Fe3O4 nanoparticles for lithium ion storage. New J. Chem. 2015, 39, 2651-2656.

185

Liang, C. L.; Zhai, T.; Wang, W.; Chen, J.; Zhao, W. X.; Lu, X. H.; Tong, Y. X. Fe3O4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage. J. Mater. Chem. A 2014, 2, 7214-7220.

186

Suryawanshi, A.; Aravindan, V.; Mhamane, D.; Yadav, P.; Patil, S.; Madhavi, S.; Ogale, S. Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Stor. Mater. 2015, 1, 152-157.

187

Aravindan, V.; Gnanaraj, J.; Lee, Y. -S.; Madhavi, S. LiMnPO4-A next generation cathode material for lithium- ion batteries. J. Mater. Chem. A 2013, 1, 3518-3539.

188

Hassoun, J.; Croce, F.; Hong, I.; Scrosati, B. Lithium-iron battery: Fe2O3 anode versus LiFePO4 cathode. Electrochem. Commun. 2011, 13, 228-231.

189

Hariharan, S.; Ramar, V.; Joshi, S. P.; Balaya, P. Developing a light weight lithium ion battery-An effective material and electrode design for high performance conversion anodes. RSC Adv. 2013, 3, 6386-6394.

190

Verrelli, R.; Brescia, R.; Scarpellini, A.; Manna, L.; Scrosati, B.; Hassoun, J. A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode. RSC Adv. 2014, 4, 61855-61862.

191

Varzi, A.; Bresser, D.; von Zamory, J.; Müller, F.; Passerini, S. ZnFe2O4-C/LiFePO4-CNT: A novel high-power lithium-ion battery with excellent cycling performance. Adv. Energy Mater. 2014, 4, 1400054.

192

Zhao, Y. X.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763-2776.

193

Verrelli, R.; Hassoun, J.; Farkas, A.; Jacob, T.; Scrosati, B. A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery. J. Mater. Chem. A 2013, 1, 15329-15333.

194

Verrelli, R.; Scrosati, B.; Sun, Y. -K.; Hassoun, J. Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode. ACS Appl. Mater. Interfaces 2014, 6, 5206-5211.

195

Balogun, M. -S.; Qiu, W. T.; Luo, Y.; Huang, Y. C.; Yang, H.; Li, M. Y.; Yu, M. H.; Liang, C. L.; Fang, P. P.; Liu, P. et al. Improving the lithium-storage properties of self- grown nickel oxide: A back-up from TiO2 nanoparticles. ChemElectroChem 2015, 2, 1243-1248.

196

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.

197

Jian, Z. L.; Han, W. Z.; Liang, Y. L.; Lan, Y. C.; Fang, Z.; Hu, Y. -S.; Yao, Y. Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2014, 2, 20231-20236.

198

Zhang, Y.; Nie, P.; Shen, L. F.; Xu, G. Y.; Deng, H. F.; Luo, H. F.; Zhang, X. G. Rhombohedral NASICON- structured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Adv. 2014, 4, 8627-8631.

199

Whittingham, M. S.; Song, Y. N.; Lutta, S.; Zavalij, P. Y.; Chernova, N. A. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 2005, 15, 3362-3379.

200

Yuan, G. H.; Wang, G.; Wang, H.; Bai, J. T. Half-cell and full-cell investigations of 3D hierarchical MoS2/graphene composite on anode performance in lithium-ion batteries. J. Alloy. Compd. 2016, 660, 62-72.

201

Zou, F.; Hu, X. L.; Li, Z.; Qie, L.; Hu, C. C.; Zeng, R.; Jiang, Y.; Huang, Y. H. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 2014, 26, 6622-6628.

202

Zhao, Y.; Song, Z. X.; Li, X.; Sun, Q.; Cheng, N. C.; Lawes, S.; Sun, X. L. Metal organic frameworks for energy storage and conversion. Energy Stor. Mater. 2016, 2, 35-62.

203

Li, C.; Hu, X. S.; Lou, X. B.; Chen, Q.; Hu, B. W. Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem. Commun. 2016, 52, 2035-2038.

204

Hu, Z.; Liu, Q. N.; Sun, W. Y.; Li, W. J.; Tao, Z. L.; Chou, S. -L.; Chen, J.; Dou, S. -X. MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorg. Chem. Front. 2016, 3, 532-535.

205

Hong, H. Y. P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117-124.

206

Zhang, X. F.; Kuhnel, R. -S.; Schroeder, M.; Balducci, A. Revisiting Li3V2(PO4)3 as an anode-An outstanding negative electrode for high power energy storage devices. J. Mater. Chem. A 2014, 2, 17906-17913.

207

Mao, W. -F.; Ma, Y.; Liu, S. -K.; Tang, Z. -Y.; Fu, Y. -B. Facile Synthesis of hybrid phase Li2NaV2(PO4)3 and its application in lithium ion full cell: Li2NaV2(PO4)3||Li2NaV2(PO4)3. Electrochim. Acta 2014, 147, 498-505.

208

Moorhead-Rosenberg, Z.; Allcorn, E.; Manthiram, A. In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwave- assisted chemical lithiation process. Chem. Mater. 2014, 26, 5905-5913.

209

Gay, E. C.; Vissers, D. R.; Martino, F. J.; Anderson, K. E. Performance characteristics of solid lithium-aluminum alloy electrodes. J. Electrochem. Soc. 1976, 123, 1591-1596.

210

Li, S.; Niu, J. J.; Zhao, Y. C.; So, K. P.; Wang, C.; Wang, C. A.; Li, J. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 2015, 6, 7872.

211

Lin, M. -C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. -Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. -J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324-328.

212

Zhang, C. J.; Lin, Z.; Yang, Z. Z.; Xiao, D. D.; Hu, P.; Xu, H. X.; Duan, Y. L.; Pang, S. P.; Gu, L.; Cui, G. L. Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage. Chem. Mater. 2015, 27, 2189-2194.

213

Jayaraman, S.; Aravindan, V.; Shubha, N.; Ulaganathan, M.; Madhavi, S. Exploring anatase TiO2 nanofibers as new cathode for constructing 1. 6 V class "rocking-chair" type Li-ion cells. Part. Part. Syst. Char. , in press, DOI: 10.1002/ppsc.201600044.

214

Liu, J.; Wen, Y. R.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earth- abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025-6030.

215

Balogun, M. -S.; Luo, Y.; Lyu, F.; Wang, F. X.; Yang, H.; Li, H. B.; Liang, C. L.; Huang, M.; Huang, Y. C.; Tong, Y. X. Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9733-9744.

216

Qiu, W. D.; Xia, J.; Zhong, H. M.; He, S. X.; Lai, S. H.; Chen, L. P. L-cysteine-assisted synthesis of cubic pyrite/nitrogen-doped graphene composite as anode material for lithium-ion batteries. Electrochim. Acta 2014, 137, 197-205.

217

Hassoun, J.; Lee, K. -S.; Sun, Y. -K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139-3143.

218

Aravindan, V.; Sundaramurthy, J.; Kumar, P. S.; Shubha, N.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 2013, 5, 10636-10645.

Nano Research
Pages 2823-2851
Cite this article:
Balogun M-S, Qiu W, Luo Y, et al. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9(10): 2823-2851. https://doi.org/10.1007/s12274-016-1171-1
Metrics & Citations  
Article History
Copyright
Return