AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles

Aaron S. Schwartz-Duval1,2Santosh K. Misra1,2Prabuddha Mukherjee1Elyse Johnson3Alvin S. Acerbo4Dipanjan Pan1,2( )
Department of Bioengineering and Beckman InstituteUniversity of IllinoisUrbana-ChampaignUrbana61801USA
Biomedical Research CenterCarle Foundation HospitalUrbana61801USA
Cytoviva Inc.Auburn36830USA
Center for Advanced Radiation SourcesThe University of ChicagoChicago60637USA
Show Author Information

Graphical Abstract

Abstract

Of late, many synthesis processes have been studied to develop irregular nano-morphologies of gold nanostructures for biomedical applications in order to increase the efficacy of nanoparticle theranostics, tune the plasmonic absorbance spectra, and increase the sensitivity of biomolecule detection through surface enhanced Raman spectroscopy. Here we report, a novel, non-seed mediated versatile single pot synthesis method capable of producing hyperbranched gold "nano-polyvilli" with more than 50–90 branching nanowires propagating from a single origin within each structure. The technique was capable of achieving precise tuning of the branch propagation where the branching could be controlled by varying the duration of incubation, temperature, and hydrogen ion concentration.

Electronic Supplementary Material

Download File(s)
nr-9-10-2889_ESM.pdf (2.5 MB)

References

1

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293-346.

2

Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721-1730.

3

Ding, Y.; Jiang, Z. W.; Saha, K.; Kim, C. S.; Kim, S. T.; Landis, R. F.; Rotello, V. M. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014, 22, 1075-1083.

4

Rouhana, L. L.; Jaber, J. A.; Schlenoff, J. B. Aggregation-resistant water-soluble gold nanoparticles. Langmuir 2007, 23, 12799-12801.

5

Cormode, D. P.; Roessl, E.; Thran, A.; Skajaa, T.; Gordon, R. E.; Schlomka, J. -P.; Fuster, V.; Fisher, E. A.; Mulder, W. J. M.; Proksa, R. et al. Atherosclerotic plaque composition: Analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010, 256, 774-782.

6

Schirra, C. O.; Senpan, A.; Roessl, E.; Thran, A.; Stacy, A. J.; Wu, L.; Proska, R.; Pan, D. Second generation gold nanobeacons for robust K-edge imaging with multi-energy CT. J. Mater. Chem. 2012, 22, 23071-23077.

7

O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171-176.

8

Pan, D.; Pramanik, M.; Senpan, A.; Ghosh, S.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 2010, 31, 4088-4093.

9

Yuan, H.; Khoury, C. G.; Hwang, H.; Wilson, C. M.; Grant, G. A.; Vo-Dinh, T. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23, 075102.

10

Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587-1595.

11

Wang, Y. C.; Black, K. C. L.; Luehmann, H.; Li, W. Y.; Zhang, Y.; Cai, X.; Wan, D. H.; Liu, S. Y.; Li, M.; Kim, P. et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7, 2068-2077.

12

Pan, D.; Pramanik, M.; Senpan, A.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging. J. Nanosci. Nanotechnol. 2010, 10, 8118-8123.

13

Fales, A. M.; Yuan, H.; Vo-Dinh, T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: A potential nanoplatform for theranostics. Langmuir 2011, 27, 12186-12190.

14

Gottheim, S.; Zhang, H.; Govorov, A. O.; Halas, N. J. Fractal nanoparticle plasmonics: The cayley tree. 2015, 9, 3284-3292.

15

Xiao, J. Y.; Qi, L. M. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 2011, 3, 1383-1396.

16

Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238-7248.

17

Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.

18

Averitt, R. D.; Sarkar, D.; Halas, N. J. Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 1997, 78, 4217-4220.

19

Rotz, M. W.; Culver, K. S. B.; Parigi, G.; MacRenaris, K. W.; Luchinat, C.; Odom, T. W.; Meade, T. J. High relaxivity Gd(Ⅲ)-DNA gold nanostars: Investigation of shape effects on proton relaxation. ACS Nano 2015, 9, 3385-3396.

20

Kim, T. -I.; Kim, J. -H.; Son, S. J.; Seo, S. -M. Gold nanocones fabricated by nanotransfer printing and their application for field emission. Nanotechnology 2008, 19, 295302.

21

Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482-488.

22

Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90-99.

23

Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121, 2768-2780.

24

Cho, K.; Wang, X.; Nie, S. M.; Chen, Z. G.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310-1316.

25

Pan, D.; Schmieder, A. H.; Wang, K. Z.; Yang, X. X.; Senpan, A.; Cui, G.; Killgore, K.; Kim, B.; Allen, J. S.; Zhang, H. Y. et al. Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using αvβ3-targeted theranostic nanoparticles. Theranostics 2014, 4, 565-578.

26

Faraji, A. H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 2009, 17, 2950-2962.

27

Sk Md, N.; Kim, H. K.; Park, J. A.; Chang, Y. M.; Kim, T. J. Gold nanoparticles coated with Gd-chelate as a potential CT/MRI bimodal contrast agent. Bull. Korean Chem. Soc. 2010, 31, 1177-1181.

28

Moriggi, L.; Cannizzo, C.; Dumas, E.; Mayer, C. R.; Ulianov, A.; Helm, L. Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. J. Am. Chem. Soc. 2009, 131, 10828-10829.

29

Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908-5915.

30

Jokerst, J. V.; Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050- 1060.

31

Pan, D.; Pramanik, M.; Senpan, A.; Allen, J. S.; Zhang, H. Y.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 2011, 25, 875-882.

32

Cao, Y. Y.; He, Y.; Liu, H.; Luo, Y.; Shen, M. W.; Xia, J. D.; Shi, X. Y. Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. J. Mater. Chem. B 2015, 3, 286-295.

33

Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008, 8, 4593-4596.

34

Champion, J. A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4930-4934.

35

Champion, J. A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26, 244-249.

36

Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438-448.

37

Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182-195.

38

Darbandi, A.; Kavanagh, K. L.; Watkins, S. P. Lithography- free fabrication of core-shell GaAs nanowire tunnel diodes. Nano Lett. 2015, 15, 5408-5413.

39

Liu, R. Y.; Zhang, F. T.; Con, C.; Cui, B.; Sun, B. Q. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 155.

40

Liu, K.; Zeng, X.; Jiang, S. H.; Ji, D. X.; Song, H. M.; Zhang, N.; Gan, Q. Q. A large-scale lithography-free metasurface with spectrally tunable super absorption. Nanoscale 2014, 6, 5599-5605.

41

Nalbant Esenturk, E.; Hight Walker, A. R. Surface-enhanced Raman scattering spectroscopy via gold nanostars. J. Raman Spectrosc. 2009, 40, 86-91.

42

Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Single gold nanostars enhance Raman scattering. Appl. Phys. Lett. 2009, 94, 153113.

43

Yuan, H.; Fales, A. M.; Khoury, C. G.; Liu, J.; Vo-Dinh, T. Spectral characterization and intracellular detection of surface- enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J. Raman Spectrosc. 2013, 44, 234-239.

44

Lu, G. W.; Li, C.; Shi, G. Q. Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced Raman scattering. Chem. Mater. 2007, 19, 3433-3440.

45

Léger, C.; Argoul, F.; Bazant, M. Z. Front dynamics during diffusion-limited corrosion of ramified electrodeposits. J. Phys. Chem. B 1999, 103, 5841-5851.

46

Picioreanu, C.; van Loosdrecht, M. C.; Heijnen, J. J. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 1998, 58, 101-116.

47

Fujikawa, H.; Matsushita, M. Bacterial fractal growth in the concentration field of nutrient. J. Phys. Soc. Jpn. 1991, 60, 88-94.

48

Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Phys. D Nonlinear Phenom. 1993, 63, 410-423.

49

Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 1980, 52, 1-28.

50

Keshavarzi, A.; Wisniewski, W.; Rüssel, C. Dendritic growth of yttrium aluminum garnet from an oxide melt in the system SiO2/Al2O3/Y2O3/CaO. CrystEngComm 2012, 14, 6904-6909.

51

Hiramatsu, H.; Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509-2511.

52

Liu, X.; Atwater, M.; Wang, J. H.; Dai, Q.; Zou, J. H.; Brennan, J. P.; Huo, Q. A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand. J. Nanosci. Nanotechnol. 2007, 7, 3126-3133.

53

Lu, X. M.; Yavuz, M. S.; Tuan, H. -Y.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900-8901.

54

Yue, Y.; Kan, Y. W.; Choi, H.; Clearfield, A.; Liang, H. Correlating hydrodynamic radii with that of two-dimensional nanoparticles. Appl. Phys. Lett. 2015, 107, 253103.

55

Khlebtsov, B. N.; Khlebtsov, N. G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 2011, 73, 118-127.

56

Rodríguez-Fernández, J.; Pérez-Juste, J.; Liz-Marzán, L. M.; Lang, P. R. Dynamic light scattering of short au rods with low aspect ratios. J. Phys. Chem. C 2007, 111, 5020-5025.

57

Limbach, L. K.; Wick, P.; Manser, P.; Grass, R. N.; Bruinink, A.; Stark, W. J. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158-4163.

58

Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J. M.; Nienhaus, G. U.; Parak, W. J. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano 2015, 9, 6996-7008.

59

Schrade, A.; Mailänder, V.; Ritz, S.; Landfester, K.; Ziener, U. Surface roughness and charge influence the uptake of nanoparticles: Fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles. Macromol. Biosci. 2012, 12, 1459-1471.

60

Akilbekova, D.; Philiph, R.; Graham, A.; Bratlie, K. M. Macrophage reprogramming: Influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro. J. Biomed. Mater. Res. A 2015, 103, 262-268.

61

Razani, B.; Woodman, S. E.; Lisanti, M. P. Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 2002, 54, 431-467.

62

Arias, J. L.; Fernández, M. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem. Rev. 2008, 108, 4475-4482.

63

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.

Nano Research
Pages 2889-2903
Cite this article:
Schwartz-Duval AS, Misra SK, Mukherjee P, et al. An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles. Nano Research, 2016, 9(10): 2889-2903. https://doi.org/10.1007/s12274-016-1174-y

667

Views

9

Crossref

N/A

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 01 May 2016
Revised: 02 June 2016
Accepted: 07 June 2016
Published: 12 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return