Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this study, macroscopic graphene-wrapped melamine foams (MF-G) were fabricated by an MF-templated layer-by-layer (LBL) assembly using graphene oxide as building blocks, followed by solution-processed reduction. By concisely duplicating sponge-like, highly ordered three-dimensional architectures from MF, the resulting MF-G with an interconnected graphene-based scaffold and tunable nanostructure was explored as compressible, robust electrodes for efficient energy storage. A thin layer of pseudocapacitive polypyrrole (PPy) was then attached and uniformly coated on MF-G, resulting in a well-defined core–double-shell configuration of the MF-G-PPy ternary composite sponges. The as-assembled devices exhibited enhancement of supercapacitor performance, with a high specific capacitance of 427 F·g-1 under a compressive strain of 75% and an excellent cycling stability with only 18% degradation after 5, 000 charge–discharge cycles. Besides, the MF-G-PPy electrode maintained stable capacitance up to 100 compression–release cycles, with a compressive strain of 75%. These encouraging results thus provide a new route towards the low-cost, easily scalable fabrication of lightweight and deformation-tolerant electrodes.
Xiao, X.; Ding, T. P.; Yuan, L. Y.; Shen, Y. Q.; Zhong, Q. Z.; Zhang, X. H.; Cao, Y. Z.; Hu, B.; Zhai, T.; Gong, L. et al. WO3-x/MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2012, 2, 1328-1332.
Lu, X. H.; Yu, M. H.; Zhai, T.; Wang, G. M.; Xie, S. L.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628-2633.
Lu, Q.; Chen, J. G.; Xiao, J. Q. Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem., Int. Ed. 2013, 52, 1882-1889.
Zhang, G. Q.; Lou, X. W. D. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976-979.
Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@ MnO2//h-TiO2@ C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267-272.
Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403-4411.
Guan, C.; Xia, X. H.; Meng, N.; Zeng, Z. Y.; Cao, X. H.; Soci, C.; Zhang, H.; Fan, H. J. Hollow core-shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 9085-9090.
Xia, X. H.; Zhu, C. R.; Luo, J. S.; Zeng, Z. Y.; Guan, C.; Ng, C. F.; Zhang, H.; Fan, H. J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766-773.
Zhang, F.; Yuan, C. Z.; Zhu, J. J.; Wang, J.; Zhang, X. G.; Lou, X. W. D. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 2013, 23, 3909-3915.
Zhu, J. X.; Zhu, T.; Zhou, X. Z.; Zhang, Y. Y.; Lou, X. W.; Chen, X. D.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 2011, 3, 1084-1089.
Liu, J. L.; Zhang, L. L.; Wu, H. B.; Lin, J. Y.; Shen, Z. X.; Lou, X. W. D. High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 2014, 7, 3709-3719.
Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850-1865.
Wang, G. K.; Sun, X.; Lu, F. Y.; Sun, H. T.; Yu, M. P.; Jiang, W. L.; Liu, C. S.; Lian, J. Flexible pillared graphene- paper electrodes for high-performance electrochemical supercapacitors. Small 2012, 8, 452-459.
Luo, B.; Liu, S.; Zhi, L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 2012, 8, 630-646.
Yin, S. Y.; Niu, Z. Q.; Chen, X. D. Assembly of graphene sheets into 3D macroscopic structures. Small 2012, 8, 2458-2463.
Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem., Int. Ed. 2014, 126, 1880-1884.
Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763-4782.
Luo, B.; Zhi, L. J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 2015, 8, 456-477.
Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815-1819.
Ren, J.; Bai, W. Y.; Guan, G. Z.; Zhang, Y.; Peng, H. S. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 2013, 25, 5965-5970.
Cong, H. -P.; Ren, X. -C.; Wang, P.; Yu, S. -H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185-1191.
He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174-182.
Chen, L. -F.; Huang, Z. -H.; Liang, H. -W.; Yao, W. -T.; Yu, Z. -Y.; Yu, S. -H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331-3338.
Wang, Q.; Yan, J.; Fan, Z. Q. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729-762.
Dimesso, L.; Spanheimer, C.; Jacke, S.; Jaegermann, W. Synthesis and characterization of three-dimensional carbon foams-LiFePO4 composites. J. Power Sources 2011, 196, 6729-6734.
Kodama, M.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kamegawa, K. Preparation and electrochemical characteristics of N-enriched carbon foam. Carbon 2007, 45, 1105-1107.
Chen, S. L.; Liu, Q.; He, G. H.; Zhou, Y.; Hanif, M.; Peng, X. W.; Wang, S. Q.; Hou, H. Q. Reticulated carbon foam derived from a sponge-like natural product as a high- performance anode in microbial fuel cells. J. Mater. Chem. 2012, 22, 18609-18613.
Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591-595.
Li, X.; Rong, J. P.; Wei, B. Q. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 2010, 4, 6039-6049.
Li, P. X.; Kong, C. Y.; Shang, Y. Y.; Shi, E. Z.; Yu, Y. T.; Qian, W. Z.; Wei, F.; Wei, J. Q.; Wang, K. L.; Zhu, H. W. et al. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale 2013, 5, 8472-8479.
Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209-218.
Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163-3168.
Chen, S. L.; He, G. H.; Hu, H.; Jin, S. Q.; Zhou, Y.; He, Y. Y.; He, S. J.; Zhao, F.; Hou, H. Q. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy Environ. Sci. 2013, 6, 2435-2439.
He, S. J.; Chen, W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 2014, 262, 391-400.
Zhu, G. X.; Xi, C. Y.; Liu, Y. J.; Zhu, J.; Shen, X. P. CN foam loaded with few-layer graphene nanosheets for high-performance supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 7591-7599.
Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723- 3728.
Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617-621.
Basiricò, L.; Lanzara, G. Moving towards high-power, high-frequency and low-resistance cnt supercapacitors by tuning the cnt length, axial deformation and contact resistance. Nanotechnology 2012, 23, 305401.
Li, P. X.; Yang, Y. B.; Shi, E. Z.; Shen, Q. C.; Shang, Y. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl. Mater. Interfaces 2014, 6, 5228-5234.
Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101-5105.
Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219-2223.
Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene- based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876-1902.
Tao, Y.; Xie, X. Y.; Lv, W.; Tang, D. -M.; Kong, D. B.; Huang, Z. H.; Nishihara, H.; Ishii, T.; Li, B. H.; Golberg, D. et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 2013, 3, 2975.
Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitor. Nanoscale 2014, 6, 6448-6451.
Lu, X. H.; Zhai, T.; Zhang, X. H.; Shen, Y. Q.; Yuan, L. Y.; Hu, B.; Gong, L.; Chen, J.; Gao, Y. H.; Zhou, J. et al. WO3-x@Au@ MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 2012, 24, 938-944.
Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002-6008.
Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058-1064.
Wu, X. L.; Yang, D. R.; Wang, C. K.; Jiang, Y. T.; Wei, T.; Fan, Z. J. Functionalized three-dimensional graphene networks for high performance supercapacitors. Carbon 2015, 92, 26-30.
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806-4814.
Li, Z. P.; Wang, J. Q.; Liu, X. H.; Liu, S.; Ou, J. F.; Yang, S. R. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J. Mater. Chem. 2011, 21, 3397-3403.
Sheng, K. X.; Bai, H.; Sun, Y. Q.; Li, C.; Shi, G. Q. Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices. Polymer 2011, 52, 5567-5572.
Lee, T.; Yun, T.; Park, B.; Sharma, B.; Song, H. -K.; Kim, B. -S. Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: Importance of establishing intimate electronic contact through nanoscale blending. J. Mater. Chem. 2012, 22, 21092-21099.