AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode

Le LiKai WangZhaoqi HuangChao Zhang( )Tianxi Liu( )
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and EngineeringDonghua UniversityShanghai201620China
Show Author Information

Graphical Abstract

Abstract

In this study, macroscopic graphene-wrapped melamine foams (MF-G) were fabricated by an MF-templated layer-by-layer (LBL) assembly using graphene oxide as building blocks, followed by solution-processed reduction. By concisely duplicating sponge-like, highly ordered three-dimensional architectures from MF, the resulting MF-G with an interconnected graphene-based scaffold and tunable nanostructure was explored as compressible, robust electrodes for efficient energy storage. A thin layer of pseudocapacitive polypyrrole (PPy) was then attached and uniformly coated on MF-G, resulting in a well-defined core–double-shell configuration of the MF-G-PPy ternary composite sponges. The as-assembled devices exhibited enhancement of supercapacitor performance, with a high specific capacitance of 427 F·g-1 under a compressive strain of 75% and an excellent cycling stability with only 18% degradation after 5, 000 charge–discharge cycles. Besides, the MF-G-PPy electrode maintained stable capacitance up to 100 compression–release cycles, with a compressive strain of 75%. These encouraging results thus provide a new route towards the low-cost, easily scalable fabrication of lightweight and deformation-tolerant electrodes.

Electronic Supplementary Material

Download File(s)
nr-9-10-2938_ESM.pdf (983.5 KB)

References

1

Xiao, X.; Ding, T. P.; Yuan, L. Y.; Shen, Y. Q.; Zhong, Q. Z.; Zhang, X. H.; Cao, Y. Z.; Hu, B.; Zhai, T.; Gong, L. et al. WO3-x/MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2012, 2, 1328-1332.

2

Lu, X. H.; Yu, M. H.; Zhai, T.; Wang, G. M.; Xie, S. L.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628-2633.

3

Lu, Q.; Chen, J. G.; Xiao, J. Q. Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem., Int. Ed. 2013, 52, 1882-1889.

4

Zhang, G. Q.; Lou, X. W. D. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976-979.

5

Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@ MnO2//h-TiO2@ C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267-272.

6

Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403-4411.

7

Guan, C.; Xia, X. H.; Meng, N.; Zeng, Z. Y.; Cao, X. H.; Soci, C.; Zhang, H.; Fan, H. J. Hollow core-shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 9085-9090.

8

Xia, X. H.; Zhu, C. R.; Luo, J. S.; Zeng, Z. Y.; Guan, C.; Ng, C. F.; Zhang, H.; Fan, H. J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766-773.

9

Zhang, F.; Yuan, C. Z.; Zhu, J. J.; Wang, J.; Zhang, X. G.; Lou, X. W. D. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 2013, 23, 3909-3915.

10

Zhu, J. X.; Zhu, T.; Zhou, X. Z.; Zhang, Y. Y.; Lou, X. W.; Chen, X. D.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 2011, 3, 1084-1089.

11

Liu, J. L.; Zhang, L. L.; Wu, H. B.; Lin, J. Y.; Shen, Z. X.; Lou, X. W. D. High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 2014, 7, 3709-3719.

12

Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850-1865.

13

Wang, G. K.; Sun, X.; Lu, F. Y.; Sun, H. T.; Yu, M. P.; Jiang, W. L.; Liu, C. S.; Lian, J. Flexible pillared graphene- paper electrodes for high-performance electrochemical supercapacitors. Small 2012, 8, 452-459.

14

Luo, B.; Liu, S.; Zhi, L. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 2012, 8, 630-646.

15

Yin, S. Y.; Niu, Z. Q.; Chen, X. D. Assembly of graphene sheets into 3D macroscopic structures. Small 2012, 8, 2458-2463.

16

Wang, X. F.; Liu, B.; Liu, R.; Wang, Q. F.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem., Int. Ed. 2014, 126, 1880-1884.

17

Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763-4782.

18

Luo, B.; Zhi, L. J. Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 2015, 8, 456-477.

19

Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815-1819.

20

Ren, J.; Bai, W. Y.; Guan, G. Z.; Zhang, Y.; Peng, H. S. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 2013, 25, 5965-5970.

21

Cong, H. -P.; Ren, X. -C.; Wang, P.; Yu, S. -H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185-1191.

22

He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174-182.

23

Chen, L. -F.; Huang, Z. -H.; Liang, H. -W.; Yao, W. -T.; Yu, Z. -Y.; Yu, S. -H. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 2013, 6, 3331-3338.

24

Wang, Q.; Yan, J.; Fan, Z. Q. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729-762.

25

Dimesso, L.; Spanheimer, C.; Jacke, S.; Jaegermann, W. Synthesis and characterization of three-dimensional carbon foams-LiFePO4 composites. J. Power Sources 2011, 196, 6729-6734.

26

Kodama, M.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kamegawa, K. Preparation and electrochemical characteristics of N-enriched carbon foam. Carbon 2007, 45, 1105-1107.

27

Chen, S. L.; Liu, Q.; He, G. H.; Zhou, Y.; Hanif, M.; Peng, X. W.; Wang, S. Q.; Hou, H. Q. Reticulated carbon foam derived from a sponge-like natural product as a high- performance anode in microbial fuel cells. J. Mater. Chem. 2012, 22, 18609-18613.

28

Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591-595.

29

Li, X.; Rong, J. P.; Wei, B. Q. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 2010, 4, 6039-6049.

30

Li, P. X.; Kong, C. Y.; Shang, Y. Y.; Shi, E. Z.; Yu, Y. T.; Qian, W. Z.; Wei, F.; Wei, J. Q.; Wang, K. L.; Zhu, H. W. et al. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale 2013, 5, 8472-8479.

31

Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209-218.

32

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163-3168.

33

Chen, S. L.; He, G. H.; Hu, H.; Jin, S. Q.; Zhou, Y.; He, Y. Y.; He, S. J.; Zhao, F.; Hou, H. Q. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy Environ. Sci. 2013, 6, 2435-2439.

34

He, S. J.; Chen, W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 2014, 262, 391-400.

35

Zhu, G. X.; Xi, C. Y.; Liu, Y. J.; Zhu, J.; Shen, X. P. CN foam loaded with few-layer graphene nanosheets for high-performance supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 7591-7599.

36

Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723- 3728.

37

Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617-621.

38

Basiricò, L.; Lanzara, G. Moving towards high-power, high-frequency and low-resistance cnt supercapacitors by tuning the cnt length, axial deformation and contact resistance. Nanotechnology 2012, 23, 305401.

39

Li, P. X.; Yang, Y. B.; Shi, E. Z.; Shen, Q. C.; Shang, Y. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl. Mater. Interfaces 2014, 6, 5228-5234.

40

Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101-5105.

41

Hu, H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219-2223.

42

Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene- based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876-1902.

43

Tao, Y.; Xie, X. Y.; Lv, W.; Tang, D. -M.; Kong, D. B.; Huang, Z. H.; Nishihara, H.; Ishii, T.; Li, B. H.; Golberg, D. et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 2013, 3, 2975.

44

Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitor. Nanoscale 2014, 6, 6448-6451.

45

Lu, X. H.; Zhai, T.; Zhang, X. H.; Shen, Y. Q.; Yuan, L. Y.; Hu, B.; Gong, L.; Chen, J.; Gao, Y. H.; Zhou, J. et al. WO3-x@Au@ MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 2012, 24, 938-944.

46

Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002-6008.

47

Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058-1064.

48

Wu, X. L.; Yang, D. R.; Wang, C. K.; Jiang, Y. T.; Wei, T.; Fan, Z. J. Functionalized three-dimensional graphene networks for high performance supercapacitors. Carbon 2015, 92, 26-30.

49

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806-4814.

50

Li, Z. P.; Wang, J. Q.; Liu, X. H.; Liu, S.; Ou, J. F.; Yang, S. R. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J. Mater. Chem. 2011, 21, 3397-3403.

51

Sheng, K. X.; Bai, H.; Sun, Y. Q.; Li, C.; Shi, G. Q. Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices. Polymer 2011, 52, 5567-5572.

52

Lee, T.; Yun, T.; Park, B.; Sharma, B.; Song, H. -K.; Kim, B. -S. Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: Importance of establishing intimate electronic contact through nanoscale blending. J. Mater. Chem. 2012, 22, 21092-21099.

Nano Research
Pages 2938-2949
Cite this article:
Li L, Wang K, Huang Z, et al. Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. Nano Research, 2016, 9(10): 2938-2949. https://doi.org/10.1007/s12274-016-1179-6

779

Views

53

Crossref

N/A

Web of Science

53

Scopus

3

CSCD

Altmetrics

Received: 26 April 2016
Revised: 12 June 2016
Accepted: 13 June 2016
Published: 15 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return