AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solution processed inorganic V2Oxas interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency

Haitao Peng1,2Weihai Sun2Yunlong Li2Senyun Ye2Haixia Rao2Weibo Yan2Huanping Zhou1,3( )Zuqiang Bian2( )Chunhui Huang2
Department of Energy and Resources EngineeringCollege of EngineeringPeking UniversityBeijing100871China
State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPeking UniversityBeijing100871China
Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
Show Author Information

Graphical Abstract

Abstract

An inverted planar heterojunction perovskite solar cell (PSC) is one of the most competitive photovoltaic devices exhibiting a high power conversion efficiency (PCE) and nearly free hysteresis in the voltage–current output. However, the band alignment between the transport materials and the perovskite absorber has not been optimized, resulting in a lower open-circuit voltage (Voc) than that of regular PSCs. To address this issue, we tune the band alignment in perovskite photovoltaic architecture by introducing bilayer structured transport materials, e.g., the hole transport material poly(ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS)/V2O5. In this study, solution processed inorganic V2Ox interlayer is incorporated into PEDOT: PSS for achieving improved film surface properties as well as optical and electrical properties. For example, the work function (WF) was changed from 5.1 to 5.4 eV. A remarkably high PCE of 17.5% with nearly free hysteresis and a stabilized efficiency of 17.1% have been achieved. Electronic impedance spectra (EIS) demonstrate a significant increase in the recombination resistance after introducing the interlayer, associated with the high Voc output value of 1.05 V. Transient photocurrent and photovoltage measurements indicate that a comparable charge transport process and an inhibited recombination process occur in the PSC with the introduction of the V2Ox interlayer.

Electronic Supplementary Material

Download File(s)
nr-9-10-2960_ESM.pdf (1.4 MB)

References

1

Park, N. -G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423-2429.

2

Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628-5641.

3

Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838-842.

4

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.

5

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.

6

Kim, H. -S.; Lee, C. -R.; Im, J. -H.; Lee, K. -B.; Moehl, T.; Marchioro, A.; Moon, S. -J.; Humphry-Baker, R.; Yum, J. -H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

7

Burschka, J.; Pellet, N.; Moon, S. -J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319.

8

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.

9

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.

10

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.

11

Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

12

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324-1338.

13

Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727-3732.

14

Wu, C. -G.; Chiang, C. -H.; Tseng, Z. -L.; Nazeeruddin, M. K.; Hagfeldt, A.; Grätzel, M. High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 2015, 8, 2725-2733.

15

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619-2623.

16

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476-480.

17

Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602-1608.

18

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. -C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522-525.

19

Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128-132.

20

Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

21

Lin, Q. Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 2015, 9, 106-112.

22

Meng, L.; You, J. B.; Guo, T. -F.; Yang, Y. Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 2016, 49, 155-165.

23

Ye, S. Y.; Sun, W. H.; Li, Y. L.; Yan, W. B.; Peng, H. T.; Bian, Z. Q.; Liu, Z. W.; Huang, C. H. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 2015, 15, 3723-3728.

24

Chen, W. -Y.; Deng, L. -L.; Dai, S. -M.; Wang, X.; Tian, C. -B.; Zhan, X. -X.; Xie, S. -Y.; Huang, R. -B.; Zheng, L. -S. Low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 19353-19359.

25

Kim, J. H.; Liang, P. W.; Williams, S. T.; Cho, N.; Chueh, C. C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 2015, 27, 695-701.

26

Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H. W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C. et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 2015, 27, 4013-4019.

27

Hou, F. H.; Su, Z. S.; Jin, F. M.; Yan, X. W.; Wang, L. D.; Zhao, H. F.; Zhu, J. Z.; Chu, B.; Li, W. L. Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT: PSS hole transporting layer. Nanoscale 2015, 7, 9427-9432.

28

Xie, F. X.; Choy, W. C. H.; Wang, C. D.; Li, X. C.; Zhang, S. Q.; Hou, J. H. Low-temperature solution-processed hydrogen molybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics. Adv. Mater. 2013, 25, 2051-2055.

29

Manno, D.; Serra, A.; Di Giulio, M.; Micocci, G.; Taurino, A.; Tepore, A.; Berti, D. Structural and electrical properties of sputtered vanadium oxide thin films for applications as gas sensing material. J. Appl. Phys. 1997, 81, 2709-2714.

30

Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 2014, 17, 16-23.

31

Zilberberg, K.; Trost, S.; Meyer, J.; Kahn, A.; Behrendt, A.; Lützenkirchen-Hecht, D.; Frahm, R.; Riedl, T. Inverted organic solar cells with sol-gel processed high work-function vanadium oxide hole-extraction layers. Adv. Funct. Mater. 2011, 21, 4776-4783.

32

Zilberberg, K.; Trost, S.; Schmidt, H.; Riedl, T. Solution processed vanadium pentoxide as charge extraction layer for organic solar cells. Adv. Energy Mater. 2011, 1, 377-381.

33

Mengistie, D. A.; Ibrahem, M. A.; Wang, P. -C.; Chu, C. -W. Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl. Mater. Interfaces 2014, 6, 2292-2299.

34

Intaniwet, A.; Mills, C. A.; Sellin, P. J.; Shkunov, M.; Keddie, J. L. Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays. ACS Appl. Mater. Interfaces 2010, 2, 1692-1699.

35

Badot, J. -C.; Mantoux, A.; Baffier, N.; Dubrunfaut, O.; Lincot, D. Electrical properties of V2O5 thin films obtained by atomic layer deposition (ALD). J. Mater. Chem. 2004, 14, 3411-3415.

36

You, J. B.; Meng, L.; Song, T. -B.; Guo, T. -F.; Yang, Y. M.; Chang, W. -H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75-81.

37

Juarez-Perez, E. J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 680-685.

Nano Research
Pages 2960-2971
Cite this article:
Peng H, Sun W, Li Y, et al. Solution processed inorganic V2Oxas interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. Nano Research, 2016, 9(10): 2960-2971. https://doi.org/10.1007/s12274-016-1181-z

721

Views

83

Crossref

N/A

Web of Science

80

Scopus

3

CSCD

Altmetrics

Received: 21 March 2016
Revised: 15 June 2016
Accepted: 16 June 2016
Published: 25 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return