AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications

Zhaolong Chen1Baolu Guan1,2Xu-dong Chen1Qing Zeng3Li Lin1Ruoyu Wang1Manish Kr. Priydarshi1Jingyu Sun1Zhepeng Zhang1Tongbo Wei3Jinmin Li3Yanfeng Zhang1,4Yingying Zhang5( )Zhongfan Liu1( )
Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Key Laboratory of Opto-electronics TechnologyMinistry of EducationBeijing University of TechnologyBeijing100124China
State Key Laboratory of Solid-State LightingInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
Department of Chemistry and Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Fast and uniform growth of high-quality graphene on conventional glass is of great importance for practical applications of graphene glass. We report herein a confined-flow chemical vapor deposition (CVD) approach for the high-efficiency fabrication of graphene glass. The key feature of our approach is the fabrication of a 2–4 μm wide gap above the glass substrate, with plenty of stumbling blocks; this gap was found to significantly increase the collision probability of the carbon precursors and reactive fragments between one another and with the glass surface. As a result, the growth rate of graphene glass increased remarkably, together with an improvement in the growth quality and uniformity as compared to those in the conventional gas flow CVD technique. These high-quality graphene glasses exhibited an excellent defogging performance with much higher defogging speed and higher stability compared to those previously reported. The graphene sapphire glass was found to be an ideal substrate for growing uniform and ultra-smooth aluminum nitride thin films without the tedious pre-deposition of a buffer layer. The presented confined-flow CVD approach offers a simple and low-cost route for the mass production of graphene glass, which is believed to promote the practical applications of various graphene glasses.

Electronic Supplementary Material

Download File(s)
nr-9-10-3048_ESM.pdf (1.4 MB)

References

1

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der waals heterostructures. Nat. Mater. 2015, 14, 301-306.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

3

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

4

Yan, K.; Fu, L.; Peng, H. L.; Liu, Z. F. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 2013, 46, 2263-2274.

5

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.

6

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270-274.

7

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

8

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

9

Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. -P.; Zhang, Z. Y.; Fu, Q.; Peng, L. -M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

10

Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J. Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S. et al. Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 2013, 7, 385-395.

11

Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062-8069.

12

Strupinski, W.; Grodecki, K.; Wysmolek, A.; Stepniewski, R.; Szkopek, T.; Gaskell, P. E.; Grüneis, A.; Haberer, D.; Bozek, R.; Krupka, J. et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett. 2011, 11, 1786-1791.

13

Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548-17551.

14

Chen, J. Y.; Guo, Y. L.; Jiang, L. L.; Xu, Z. P.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Hu, W. P.; Yu, G. et al. Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014, 26, 1348-1353.

15

Chen, J. Y.; Guo, Y. L.; Wen, Y. G.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Luo, B. R.; Yu, G.; Liu, Y. Q. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 2013, 25, 992-997.

16

Gao, T.; Song, X. J.; Du, H. W.; Nie, Y. F.; Chen, Y. B.; Ji, Q. Q.; Sun, J. Y.; Yang, Y. L.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6, 6835.

17

Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. -C.; Zhang, L. L.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-797.

18

Sun, J. Y.; Gao, T.; Song, X. J.; Zhao, Y. F.; Lin, Y. W.; Wang, H. C.; Ma, D. L.; Chen, Y. B.; Xiang, W. F.; Wing, J. et al. Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574-6577.

19

Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846-5854.

20

Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839-7846.

21

Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano. Res. 2015, 8, 3496-3504.

22

Chen, X. D.; Chen, Z. L.; Sun, J. Y.; Zhang, Y. F.; Liu, Z. F. Graphene glass: Direct growth of graphene on traditional glasses. Acta Phys. -Chim. Sin. 2016, 32, 14-27.

23

Plummer, J. Graphene synthesis: Molten bed. Nat. Mater. 2015, 14, 1186.

24

Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238-242.

25

Nikitin, A.; Näslund, L. -A.; Zhang, Z. Y.; Nilsson, A. C-H bond formation at the graphite surface studied with core level spectroscopy. Surf. Sci. 2008, 602, 2575-2580.

26

Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y. F.; Ajayan, P. M.; Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217-222.

27

Xia, K. L.; Jian, M. Q.; Zhang, W. L.; Zhang, Y. Y. Visualization of graphene on various substrates based on water wetting behavior. Adv. Mater. Interfaces 2016, 3, DOI: 10.1002/admi.201500674.

28

Sui, D.; Huang, Y.; Huang, L.; Liang, J. J.; Ma, Y. F.; Chen, Y. S. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186-3192.

29

Tan, L. F.; Zeng, M. Q.; Wu, Q.; Chen, L. F.; Wang, J.; Zhang, T.; Eckert, J.; Rümmeli, M. H.; Fu, L. Direct growth of ultrafast transparent single-layer graphene defoggers. Small 2015, 11, 1840-1846.

30

Taniyasu, Y.; Kasu, M. Surface 210 nm light emission from an AlN p-n junction light-emitting diode enhanced by A-plane growth orientation. Appl. Phys. Lett. 2010, 96, 221110.

31

Hirayama, H.; Fujikawa, S.; Noguchi, N.; Norimatsu, J.; Takano, T.; Tsubaki, K.; Kamata, N. 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality ALN on sapphire. Phys. Status Solidi A 2009, 206, 1176-1182.

32

Satter, M. M.; Kim, H. -J.; Lochner, Z.; Ryou, J. -H.; Shen, S. -C.; Dupuis, R. D.; Yoder, P. D. Design and analysis of 250-nm AlInN laser diodes on AlN substrates using tapered electron blocking layers. IEEE J. Quantum Electron. 2012, 48, 703-711.

33

Van Hove, M.; Boulay, S.; Bahl, S. R.; Stoffels, S.; Kang, X. W.; Wellekens, D.; Geens, K.; Delabie, A.; Decoutere, S. CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. IEEE Electr. Device L. 2012, 33, 667-669.

34

Chung, K.; Lee, C. -H.; Yi, G. -C. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 2010, 330, 655-657.

35

Kim, J.; Bayram, C.; Park, H.; Cheng, C. -W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K. B.; Bedell, S. W.; Sadana, D. K. Principle of direct van der waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 2014, 5, 4836.

36

Al Balushi, Z. Y.; Miyagi, T.; Lin, Y. -C.; Wang, K.; Calderin, L.; Bhimanapati, G.; Redwing, J. M.; Robinson, J. A. The impact of graphene properties on GaN and AlN nucleation. Surf. Sci. 2015, 634, 81-88.

37

Gupta, P.; Rahman, A. A.; Hatui, N.; Gokhale, M. R.; Deshmukh, M. M.; Bhattacharya, A. MOVPE growth of semipolar Ⅲ-nitride semiconductors on CVD graphene. J. Cryst. Growth 2013, 372, 105-108.

Nano Research
Pages 3048-3055
Cite this article:
Chen Z, Guan B, Chen X-d, et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Research, 2016, 9(10): 3048-3055. https://doi.org/10.1007/s12274-016-1187-6

682

Views

35

Crossref

N/A

Web of Science

38

Scopus

8

CSCD

Altmetrics

Received: 08 May 2016
Accepted: 23 June 2016
Published: 18 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return