AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ thickness control of black phosphorus field-effect transistors via ozone treatment

Suhyun Kim1,§Younghun Jung1,§Jong-Young Lee2Gwan-Hyoung Lee2( )Jihyun Kim1( )
Department of Chemical and Biological EngineeringKorea UniversitySeoul02841Republic of Korea
Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

A simple and reproducible method to control the thickness of black phosphorus flakes in real time using a UV/ozone treatment is demonstrated. Back-gated black phosphorus field-effect transistors (FETs) were fabricated using thick black phosphorus flakes obtained by thinning of black phosphorus, as oxygen radicals generated by UV irradiation formed phosphorus oxides on the surface. In order to monitor the thickness effect on the electrical properties, the fabricated FETs were loaded in the UV/ozone chamber, where both the optical (micro-Raman spectroscopy and optical microscopy) and electrical properties (current–voltage characteristics) were monitored in situ. We observed an intensity decrease of the Raman modes of black phosphorus while the field-effect mobility and on/off ratio increased by 48% and 6, 800%, respectively. The instability in ambient air limits the investigation and implementation of ultra-thin black phosphorus. However, the method reported in this study allowed us to start with thick black phosphorous flakes, providing a reliable approach for optimizing the electrical performance of black phosphorus-based electronic devices. We believe that these results can motivate further studies using mono- and few-layer black phosphorus.

Electronic Supplementary Material

Download File(s)
nr-9-10-3056_ESM.pdf (3.5 MB)

References

1

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.

2

Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

3

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.

4

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

5

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.

6

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

7

Kou, L. Z.; Chen, C. F.; Smith, S. C. Phosphorene: Fabrication, properties, and applications. J. Phys. Chem. Lett. 2015, 6, 2794-2805.

8

Lee, H. S.; Min, S. -W.; Chang, Y. -G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695-3700.

9

Zhu, W. J.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402.

10

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. -S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964-6970.

11

Island, J. O.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2015, 2, 011002.

12

Doganov, R. A.; O'Farrell, E. C. T.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T. et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 2015, 6, 6647.

13

Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L'Heureux, A. -L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826-832.

14

Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138-4145.

15

Kim, J. -S.; Liu, Y. N.; Zhu, W. N.; Kim, S.; Wu, D.; Tao, L.; Dodabalapur, A.; Lai, K. J.; Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 2015, 5, 8989.

16

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

17

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. -Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

18

Jones, A. M.; Yu, H. Y.; Ross, J. S.; Klement, P.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130-134.

19

Kam, K. K.; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 1982, 86, 463-467.

20

Liu, S. J.; Huo, N. J.; Gan, S.; Li, Y.; Wei, Z. M.; Huang, B. J.; Liu, J.; Li, J. B.; Chen, H. D. Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 2015, 3, 10974-10980.

21

Jia, J. Y.; Jang, S. K.; Lai, S.; Xu, J.; Choi, Y. J.; Park, J. H.; Lee, S. Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 2015, 9, 8729-8736.

22

Liu, Y. L.; Nan, H. Y.; Wu, X.; Pan, W.; Wang, W. H.; Bai, J.; Zhao, W. W.; Sun, L. T.; Wang, X. R.; Ni, Z. H. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 2013, 7, 4202-4209.

23

Yang, X. C.; Tang, S. J.; Ding, G. Q.; Xie, X. M.; Jiang, M. H.; Huang, F. Q. Layer-by-layer thinning of graphene by plasma irradiation and post-annealing. Nanotechnology 2012, 23, 025704.

24

Lu, W. L.; Ma, X. M.; Fei, Z.; Zhou, J. G.; Zhang, Z. Y.; Jin, C. H.; Zhang, Z. Probing the anisotropic behaviors of black phosphorus by transmission electron microscopy, angular-dependent Raman spectra, and electronic transport measurements. Appl. Phys. Lett. 2015, 107, 021906.

25

Ruzyllo, J.; Duranko, G. T.; Hoff, A. M. Preoxidation UV treatment of silicon wafers. J. Electrochem. Soc. 1987, 134, 2052-2055.

26

Yau, S. L.; Moffat, T. P.; Bard, A. J.; Zhang, Z. W.; Lerner, M. M. STM of the (010) surface of orthorhombic phosphorus. Chem. Phys. Lett. 1992, 198, 383-388.

27

Schroder, D. K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: New Jersey, 2006.

28

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

29

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.

30

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

31

Cui, X.; Lee, G. -H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. -H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534-540.

Nano Research
Pages 3056-3065
Cite this article:
Kim S, Jung Y, Lee J-Y, et al. In situ thickness control of black phosphorus field-effect transistors via ozone treatment. Nano Research, 2016, 9(10): 3056-3065. https://doi.org/10.1007/s12274-016-1188-5

523

Views

22

Crossref

N/A

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 01 January 2016
Revised: 23 June 2016
Accepted: 23 June 2016
Published: 25 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return