Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates

Kudilatt Hasna1,2Aldrin Antony3Joaquim Puigdollers4Kumaran Rajeev Kumar2Madambi Kunjukuttan Jayaraj1()
Nanophotonic & Optoelectronic Devices LaboratoryDepartment of PhysicsCochin University of Science & TechnologyKochi682022India
Department of InstrumentationCochin University of Science & TechnologyKochi682022India
Department of Energy Science and EngineeringIndian Institute of Technology BombayMaharashtra400076India
Department of Enginyeria ElectronicaUniversitat Politecnica CatalunyaC/Jordi Girona, 31Modul C4Barcelona08034Spain
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Development of cost-effective, highly reproducible non-conventional fabrication techniques for anisotropic metal nanostructures is essential to realizing potential applications of plasmonic devices, photonic devices, and surface enhanced Raman scattering (SERS) phenomenon based sensors. This report highlights the fabrication of nanotriangle arrays via nanoimprinting to overcome difficulties in creating large-area SERS active substrates with uniform, reproducible Raman signals. Electron beam lithography of anisotropic nanostructures, formation of arrays of nanotriangles in silicon and the transfer of triangular shapes to polymethylmethacrylate (PMMA) sheets via nanoimprinting have not been reported elsewhere. The reuse of silicon masters offers potential for production of low cost SERS substrates. The SERS activity and reproducibility of nanotriangles are illustrated and a consistent average enhancement factor of up to ~2.9 × 1011, which is the highest value reported for a patterned SERS substrate, is achieved.

Electronic Supplementary Material

Download File(s)
nr-9-10-3075_ESM.pdf (682.8 KB)

References

1

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

2

Culha, M.; Stokes, D.; Allain, L. R.; Vo-Dinh, T. Surface- enhanced Raman scattering substrate based on a self- assembled monolayer for use in gene diagnostics. Anal. Chem. 2003, 75, 6196–6201.

3
Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering: Physics and Applications; Springer-Verlag: Berlin Heidelberg, 2006.https://doi.org/10.1007/11663898
4

Vo-Dinh, T.; Stokes, D. L.; Griffin, G. D.; Volkan, M.; Kim, U. J.; Simon, M. I. Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 1999, 30, 785–793.

5

Yan, F.; Wabuyele, M. B.; Griffin, G. D.; Vass A. A.; Vo-Dinh, T. Surface-enhanced Raman scattering detection of chemical and biological agent simulants. IEEE Sens. J. 2005, 5, 665–670.

6

Guicheteau, J.; Argue, L.; Emge, D.; Hyre, A.; Jacobson, M.; Christesrn, S. Bacillus spore classification via surface- enhanced Raman spectroscopy and principal component analysis. Appl. Spectrosc. 2008, 62, 267–272.

7

Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626.

8

Garcia, M. A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D: Appl. Phys. 2011, 44, 283001.

9

Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617.

10

Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.

11

Le Ru, E. C.; Etchegoin, P. G.; Meyer, M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J. Chem. Phys. 2006, 125, 204701.

12

Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1–20.

13

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

14

Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944.

15

Kleinman, S. L.; Ringe, E.; Valley, N.; Wustholz, K. L.; Phillips, E.; Scheidt, K. A.; Schatz, G. C.; Van Duyne, R. P. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: Theory and experiment. J. Am. Chem. Soc. , 2011, 133, 4115–4122.

16

Lemma, T.; Aroca, R. F. Single molecule surface-enhanced resonance Raman scattering on colloidal silver and Langmuir–Blodgett monolayers coated with silver overlayers. J. Raman Spectrosc. 2002, 33, 197–201.

17

Hulteen, J. C.; Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B 1999, 103, 3854–3863.

18

Gunnarsson, L.; Bjerneld, E. J.; Xu, H.; Petronis, S.; Kasemo, B.; Käll, M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 2001, 78, 802–804.

19

Yu, Q. M.; Braswell1, S.; Christin, B.; Xu, J. J.; Wallace, P. M.; Gong, H.; Kaminsky, D. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 2010, 21, 355301.

20

Yue, W. S.; Wang, Z. H.; Yang, Y.; Chen, L. Q.; Syed, A.; Wong, K.; Wang, X. B. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J. Micromech. Microeng. 2012, 22, 125007.

21

Wu, W.; Hu, M.; Ou, F. S.; Li, Z. Y.; Williams, R. S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 2010, 21, 255502.

22

Barcelo, S. J.; Kim, A.; Wu, W.; Li, Z. Y. Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique. ACS Nano 2012, 6, 6446–6452.

23

Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large- area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 2011, 5, 4046–4055.

24

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

25

Lee, J. H.; Nam, J. M.; Jeon, K. S.; Lim, D. K.; Kim, H.; Kwon, S.; Lee, H.; Suh, Y. D. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS Nano 2012, 6, 9574–9584.

26

Fan, M. K.; Andrade, G. F. S.; Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25.

27

Taylor, C. E.; Pemberton, J. E.; Goodman, G. G.; Schoenfisch, M. H. Surface enhancement factors for Ag and Au surfaces relative to Pt surfaces for monolayers of thiophenol. Appl. Spectrosc. 1999, 53, 1212–1221.

28

Gartia, M. R.; Xu, Z. D.; Behymer, E.; Nguyen, H.; Britten, J. A.; Larson, C.; Miles, R.; Bora, M.; Chang, A. S. P.; Bond, T. C. et al. Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays. Nanotechnology 2010, 21, 395701–10.

29

Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 1999, 121, 9932–9939.

30

Radziuk, D.; MÖhwald, H. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection. ACS Nano 2015, 9, 2820–2835.

31

Xu, T. T.; Huang, J. A.; He, L. F.; He, Y.; Su, S.; Lee, S. T. Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy. Appl. Phy. Lett. 2011, 99, 153116.

32

Bell, S. E. J.; Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 2006, 128, 15580–15581.

33

Domke, K. F.; Zhang, D.; Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 2007, 129, 6708–6709.

34

Barhoumi, A.; Halas, N. J. Detecting chemically modified DNA bases using surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 2011, 2, 3118-3123.

35

Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928.

36

Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; Xu, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

37

Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079–6089.

38

Le Ru, E. C.; Blakie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C. 2007, 111, 13794–13803.

Nano Research
Pages 3075-3083
Cite this article:
Hasna K, Antony A, Puigdollers J, et al. Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates. Nano Research, 2016, 9(10): 3075-3083. https://doi.org/10.1007/s12274-016-1190-y
Metrics & Citations  
Article History
Copyright
Return