AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Development of a facile block copolymer method for creating hard mask patterns integrated into semiconductor manufacturing

Tandra Ghoshal1,2( )Matthew T. Shaw3Justin D. Holmes1,2Michael A. Morris2,4( )
Department of Chemistry and Tyndall National InstituteUniversity College CorkCorkIreland
AMBERCentre for Research on Adaptive Nanostructures and Nanodevices (CRANN)Trinity College DublinDublinIreland
Intel Ireland Ltd.Collinstown Industrial Estate, Co.KildareIreland
School of ChemistryTrinity College DublinDublinIreland
Show Author Information

Graphical Abstract

Abstract

Our goal is to develop a facile process to create patterns of inorganic oxides and metals on a substrate that can act as hard masks. These materials should have high etch contrast (compared to silicon) and so allow high-aspect-ratio, high-fidelity pattern transfer whilst being readily integrable in modern semiconductor fabrication (FAB friendly). Here, we show that ultra-small-dimension hard masks can be used to develop large areas of densely packed vertically and horizontally orientated Si nanowire arrays. The inorganic and metal hard masks (Ni, NiO, and ZnO) of different morphologies and dimensions were formed using microphase-separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin films by varying the BCP molecular weight, annealing temperature, and annealing solvent(s). The self-assembled polymer patterns were solvent-processed, and metal ions were included into chosen domains via a selective inclusion method. Inorganic oxide nanopatterns were subsequently developed using standard techniques. High-resolution transmission electron microscopy studies show that high-aspect-ratio pattern transfer could be affected by standard plasma etch techniques. The masking ability of the different materials was compared in order to create the highest quality uniform and smooth sidewall profiles of the Si nanowire arrays. Notably good performance of the metal mask was seen, and this could impact the use of these materials at small dimensions where conventional methods are severely limited.

Electronic Supplementary Material

Download File(s)
nr-9-10-3116_ESM.pdf (886 KB)

References

1

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

2

Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973-977.

3

Trivedi, K.; Yuk, H.; Floresca, H. C.; Kim, M. J.; Hu, W. Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett. 2011, 11, 1412-1417.

4

Moonen, P. F.; Yakimets, I.; Huskens, J. Fabrication of transistors on flexible substrates: From mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 2012, 24, 5526-5541.

5

Doerk, G. S.; Cheng, J. Y.; Singh, G.; Rettner, C. T.; Pitera, J. W.; Balakrishnan, S.; Arellano, N.; Sanders, D. P. Enabling complex nanoscale pattern customization using directed self-assembly. Nat. Commun. 2014, 5, 5805.

6

Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Lammertink, R. G. H.; Vancso, G. J. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 2001, 13, 1174-1178.

7

Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J. Ordering and melting of block copolymer spherical domains in 2 and 3 dimensions. Macromolecules 2003, 36, 3272-3288.

8

Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Fabrication of nanostructures with long-range order using block copolymer lithography. Appl. Phys. Lett. 2002, 81, 3657-3659.

9

Lopes, W. A.; Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 2001, 414, 735-738.

10

Ruiz, R.; Kang, H. M.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; Albrecht, T. R.; de Pablo, J. J.; Nealey, P. F. Density multiplication and improved lithography by directed block copolymer assembly. Science 2008, 321, 936-939.

11

Borah, D.; Shaw, M. T.; Rasappa, S.; Farrell, R. A.; O'Mahony, C.; Faulkner, C. M.; Bosea, M.; Gleeson, P.; Holmes, J. D.; Morris, M. A. Plasma etch technologies for the development of ultra-small feature size transistor devices. J. Phys. D-Appl. Phys. 2011, 44, 174012.

12

Farrell, R. A.; Kinahan, N. T.; Hansel, S.; Stuen, K. O.; Petkov, N.; Shaw, M. T.; West, L. E.; Djara, V.; Dunne, R. J.; Varona, O. G. et al. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly. Nanoscale 2012, 4, 3228-3236.

13

Ghoshal, T.; Maity, T.; Godsell, J. F.; Roy, S.; Morris, M. A. Large scale monodisperse hexagonal arrays of superparamagnetic iron oxides nanodots: A facile block copolymer inclusion method. Adv. Mater. 2012, 24, 2390-2397.

14

Ghoshal, T.; Ntaras, C.; O'Connell, J.; Shaw, M. T.; Holmes, J. D.; Avgeropoulos, A.; Morris, M. A. Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: Optical properties. Nanoscale 2016, 8, 2177-2187.

15

Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. "In situ" hard mask materials: A new methodology for creation of vertical silicon nanopillar and nanowire arrays. Nanoscale 2012, 4, 7743-7750.

16

Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv. Mater. 2014, 26, 1207-1216.

17

Ghoshal, T.; Maity, T.; Senthamaraikannan, R.; Shaw, M. T.; Carolan, P.; Holmes, J. D.; Roy, S.; Morris, M. A. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: Magnetic studies and application. Sci. Rep. 2013, 3, 2772.

18

Hawker, C. J.; Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 2005, 309, 1200-1205.

19

Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; de Pablo, J. J.; Nealey, P. F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 2003, 424, 411-414.

20

Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 2001, 13, 1152-1155.

21

Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290, 2126-2129.

22

Cheng, J. Y.; Mayes, A. M.; Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 2004, 3, 823-828.

23

De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405, 433-437.

24

Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725-6760.

25

Zhao, J. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. Study of the time evolution of the surface morphology of thin asymmetric diblock copolymer films under solvent vapor. Polymer 2005, 46, 6513-6521.

26

Mokarian-Tabari, P.; Collins, T. W.; Holmes, J. D.; Morris, M. A. Cyclical "flipping" of morphology in block copolymer thin films. ACS Nano 2011, 5, 4617-4623.

27

Fasolka, M. J.; Mayes, A. M. Block copolymer thin films: Physics and applications. Ann. Rev. Mater. Res. 2001, 31, 323-355.

28

Gu, X. D.; Liu, Z. W.; Gunkel, I.; Chourou, S. T.; Hong, S. W.; Olynick, D. L.; Russell, T. P. High aspect ratio sub-15 nm silicon trenches from block copolymer templates. Adv. Mater. 2012, 24, 5688-5694.

29

Ruiz, R.; Sandstrom, R. L.; Black, C. T. Induced orientational order in symmetric diblock copolymer thin films. Adv. Mater. 2007, 19, 587-591.

30

Xu, J.; Hong, S. W.; Gu, W. Y.; Lee, K. Y.; Kuo, D. S.; Xiao, S. G.; Russell, T. P. Fabrication of silicon oxide nanodots with an areal density beyond 1 teradots inch-2. Adv. Mater. 2011, 23, 5755-5761.

31

Fang, Q. L.; Li, X. D.; Tuan, A. P.; Perumal, J.; Kim, D. P. Direct pattern transfer using an inorganic polymer-derived silicate etch mask. J. Mater. Chem. 2011, 21, 4657-4662.

32

Lim, K. M.; Gupta, S.; Ropp, C.; Waks, E. Development of metal etch mask by single layer lift-off for silicon nitride photonic crystals. Microelectron. Eng. 2011, 88, 994-998.

33

Rangelow, I. W. Dry etching-based silicon micro-machining for MEMS. Vacuum 2001, 62, 279-291.

34

Krishnamoorthy, S.; Manipaddy, K. K.; Yap, F. L. Wafer-level self-organized copolymer templates for nanolithography with sub-50 nm feature and spatial resolutions. Adv. Funct. Mater. 2011, 21, 1102-1112.

35

Hsieh, H. Y.; Huang, S. H.; Liao, K. F.; Su, S. K.; Lai, C. H.; Chen, L. J. High-density ordered triangular Si nanopillars with sharp tips and varied slopes: One-step fabrication and excellent field emission properties. Nanotechnology 2007, 18, 505305.

36

Sanders, D. P. Advances in patterning materials for 193 nm immersion lithography. Chem. Rev. 2010, 110, 321-360.

37

Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027-1031.

38

Ghoshal, T.; Shaw, M. T.; Bolger, C. T.; Holmes, J. D.; Morris, M. A. A general method for controlled nanopatterning of oxide dots: A microphase separated block copolymer platform. J. Mater. Chem. 2012, 22, 12083-12089.

39

Wang, X. Y.; Wu, W.; Chen, Z. L.; Wang, R. H. Bauxite-supported transition metal oxides: Promising low-temperature and SO2-tolerant catalysts for selective catalytic reduction of NOx. Sci. Rep. 2015, 5, 9766.

40

Nesbitt, H. W.; Legrand, D.; Bancroft, G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 2000, 27, 357-366.

41

Harati, M.; Love, D.; Lau, W. M.; Ding, Z. F. Preparation of crystalline zinc oxide films by one-step electrodeposition in Reline. Mater. Lett. 2012, 89, 339-342.

42

Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Ed. 2005, 44, 2737-2742.

Nano Research
Pages 3116-3128
Cite this article:
Ghoshal T, Shaw MT, Holmes JD, et al. Development of a facile block copolymer method for creating hard mask patterns integrated into semiconductor manufacturing. Nano Research, 2016, 9(10): 3116-3128. https://doi.org/10.1007/s12274-016-1194-7

646

Views

9

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 20 May 2016
Revised: 22 June 2016
Accepted: 01 July 2016
Published: 25 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return