AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nitrogen-doped flower-like porous carbon materials directed by in situ hydrolysed MgO: Promising support for Ru nanoparticles in catalytic hydrogenations

Mingming LiMinghui TangJiang DengYong Wang( )
Advanced Materials and Catalysis GroupZJU-NHU United R & D CenterDepartment of ChemistryZhejiang UniversityHangzhou310028China
Show Author Information

Graphical Abstract

Abstract

The development of novel, simple, and convenient techniques for the fabrication of porous carbon materials with desirable properties, such as tunable pore structures and the presence of nitrogen functionalities, from renewable and abundant biomasses is required. We herein describe an in situ directing method for the preparation of a nitrogen-doped flower-like porous carbon (NFPC) employing arbitrarily shaped MgO from bio-derived glucosamine chloride (GAH). Experimental evidence demonstrated that the structure directing effect of the Mg(OH)2 nanosheets formed in situ from MgO hydrolysis was key to this process, with the original MgO morphology being irrelevant. Furthermore, this method was applicable for a wide variety of biomass-derived carbon precursors. The resulting NFPC exhibited a high nitrogen content of ≤9 wt.%, and was employed as a support to anchor small Ru nanoparticles (average size = 2.7 nm). The resulting Ru/NFPC was highly active in heterogeneous hydrogenations of toluene and benzoic acid, which demonstrated the advantages of nitrogen doping in terms of boosting catalytic performance.

Electronic Supplementary Material

Download File(s)
nr-9-10-3129_ESM.pdf (3.7 MB)

References

1

Yao, K. X.; Liu, X.; Li, Z.; Li, C. C.; Zeng, H. C.; Han, Y. Preparation of a Ru-nanoparticles/defective-graphene composite as a highly efficient arene-hydrogenation catalyst. ChemCatChem 2012, 4, 1938-1942.

2

Chuenchom, L.; Kraehnert, R.; Smarsly, B. M. Recent progress in soft-templating of porous carbon materials. Soft Matter. 2012, 8, 10801-10812.

3

Fang, B. Z.; Kim, J. H.; Kim, M. -S.; Yu, J. -S. Hierarchical nanostructured carbons with meso-macroporosity: Design, characterization, and applications. Acc. Chem. Res. 2013, 46, 1397-1406.

4

Liang, C. D.; Li, Z. J.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem., Int. Ed. 2008, 47, 3696-3717.

5

White, R. J.; Budarin, V.; Luque, R.; Clark, J. H.; Macquarrie, D. J. Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 2009, 38, 3401- 3418.

6

Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549-552.

7

Zhu, Q. -L.; Tsumori, N.; Xu, Q. Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres: A weakly-capping growth approach. J. Am. Chem. Soc. 2015, 137, 11743-11748.

8

Zhang, F. Q.; Meng, Y.; Gu, D.; Yan, Y.; Yu, C. Z.; Tu, B.; Zhao, D. Y. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. J. Am. Chem. Soc. 2005, 127, 13508-13509.

9

Liang, C. D.; Dai, S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 2006, 128, 5316-5317.

10

Xu, X.; Li, Y.; Gong, Y. T.; Zhang, P. F.; Li, H. R.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012, 134, 16987-16990.

11

Han, C. L.; Wang, S. P.; Wang, J.; Li, M. M.; Deng, J.; Li, H. R.; Wang, Y. Controlled synthesis of sustainable N-doped hollow core-mesoporous shell carbonaceous nanospheres from biomass. Nano Res. 2014, 7, 1809-1819.

12

Gong, Y. T.; Zhang, P. F.; Xu, X.; Li, Y.; Li, H. R.; Wang, Y. A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J. Catal. 2013, 297, 272-280.

13

Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Cheng, L.; Feng, D.; Wu, Z. X.; Chen, Z. X.; Wan, Y.; Stein, A. et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem. Mater. 2006, 18, 4447-4464.

14

Li, X. H.; Kurasch, S.; Kaiser, U.; Antonietti, M. Synthesis of monolayer-patched graphene from glucose. Angew. Chem., Int. Ed. 2012, 51, 9689-9692.

15

Wang, S. P.; Han, C. L.; Wang, J.; Deng, J.; Zhu, M. L.; Yao, J.; Li, H. R.; Wang, Y. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chem. Mater. 2014, 26, 6872-6877.

16

Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S. M.; Sun, X. -G.; Dai, S. Soft-templated mesoporous carbon-carbon nanotube composites for high performance lithium-ion batteries. Adv. Mater. 2011, 23, 4661-4666.

17

Han, S. J.; Sohn, K.; Hyeon, T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chem. Mater. 2000, 12, 3337-3341.

18

Wang, Y.; Yao, J.; Li, H. R.; Su, D. S.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362-2365.

19

Ryoo, R.; Joo, S. H.; Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 1999, 103, 7743-7746.

20

Li, Z. J.; Dai, S. Surface functionalization and pore size manipulation for carbons of ordered structure. Chem. Mater. 2005, 17, 1717-1721.

21

Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-172.

22

Kim, T. -W.; Kleitz, F.; Paul, B.; Ryoo, R. MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol- water system. J. Am. Chem. Soc. 2005, 127, 7601-7610.

23

Liu, J.; Yang, T. Y.; Wang, D. -W.; Lu, G. Q.; Zhao, D. Y.; Qiao, S. Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 2013, 4, 2798.

24

Zhao, L.; Fan, L. -Z.; Zhou, M. -Q.; Guan, H.; Qiao, S. Y.; Antonietti, M.; Titirici, M. -M. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 2010, 22, 5202-5206.

25

Tang, M. H.; Mao, S. J.; Li, M. M.; Wei, Z. Z.; Xu, F.; Li, H. R.; Wang, Y. RuPd alloy nanoparticles supported on N-doped carbon as an efficient and stable catalyst for benzoic acid hydrogenation. ACS Catal. 2015, 5, 3100-3107.

26

Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Nitrogen-doped porous carbon materials: Promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 2016, 6, 3670-3693.

27

Barrett, C. J.; Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl. Catal. B 2006, 66, 111-118.

28

Corma, A.; Ródenas, T.; Sabater, M. J. A bifunctional Pd/MgO solid catalyst for the one-pot selective N-monoalkylation of amines with alcohols. Chem. —Eur. J. 2010, 16, 254-260.

29

Fang, M. F.; Sánchez-Delgado, R. A. Ruthenium nanoparticles supported on magnesium oxide: A versatile and recyclable dual-site catalyst for hydrogenation of mono- and poly- cyclic arenes, N-heteroaromatics, and S-heteroaromatics. J. Catal. 2014, 311, 357-368.

30

Xie, K.; Qin, X. T.; Wang, X. Z.; Wang, Y. N.; Tao, H. S.; Wu, Q.; Yang, L. J.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 2012, 24, 347-352.

31

Cui, C. J.; Qian, W. Z.; Yu, Y. T.; Kong, C. Y.; Yu, B.; Xiang, L.; Wei, F. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc. 2014, 136, 2256-2259.

32

Ning, G. Q.; Liu, Y.; Wei, F.; Wen, Q.; Luo, G. H. Porous and lamella-like Fe/MgO catalysts prepared under hydrothermal conditions for high-yield synthesis of double-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 1969-1975.

33

Fan, Z. J.; Liu, Y.; Yan, J.; Ning, G. Q.; Wang, Q.; Wei, T.; Zhi, L. J.; Wei, F. Template-directed synthesis of pillared- porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 419-424.

34

Ning, G. Q.; Fan, Z. J.; Wang, G.; Gao, J. S.; Qian, W. Z.; Wei, F. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem. Commun. 2011, 47, 5976-5978.

35

Ning, G. Q.; Xu, C. G.; Zhu, X.; Zhang, R. F.; Qian, W. Z.; Wei, F.; Fan, Z. J.; Gao, J. S. MgO-catalyzed growth of N-doped wrinkled carbon nanotubes. Carbon 2013, 56, 38-44.

36

Zhu, X.; Ning, G. Q.; Fan, Z. J.; Gao, J. S.; Xu, C. M.; Qian, W. Z.; Wei, F. One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles. Carbon 2012, 50, 2764-2771.

37

Lepró, X.; Terrés, E.; Vega-Cantú, Y.; Rodríguez-Macías, F. J.; Muramatsu, H.; Kim, Y. A.; Hayahsi, T.; Endo, M.; Torres R, M.; Terrones, M. Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chem. Phys. Lett. 2008, 463, 124-129.

38

Amadou, J.; Chizari, K.; Houllé, M.; Janowska, I.; Ersen, O.; Bégin, D.; Pham-Huu, C. N-doped carbon nanotubes for liquid-phase C=C bond hydrogenation. Catal. Today 2008, 138, 62-68.

39

Villa, A.; Wang, D.; Spontoni, P.; Arrigo, R.; Su, D. S.; Prati, L. Nitrogen functionalized carbon nanostructures supported Pd and Au-Pd NPs as catalyst for alcohols oxidation. Catal. Today 2010, 157, 89-93.

40

Ning, X. M.; Yu, H.; Peng, F.; Wang, H. J. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. J. Catal. 2015, 325, 136-144.

41

Li, Z. L.; Liu, J. H.; Xia, C. G.; Li, F. W. Nitrogen- functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal. 2013, 3, 2440-2448.

42

Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.

43

Kim, M. G.; Dahmen, U.; Searcy, A. W. Structural transformations in the decomposition of Mg(OH)2 and MgCO3. J. Am. Ceram. Soc. 1987, 70, 146-154.

44

Chen, X. Y.; He, Y. Y.; Xia, Y. K.; Zhang, Z. J. Nitrogen- containing nanoporous carbons with high pore volumes from 4-(4-nitrophenylazo)resorcinol by a Mg(OH)2-assisted template carbonization method. J. Mater. Chem. A 2014, 2, 17586-17594.

45

Zhang, W. F.; Huang, Z. -H.; Zhou, C. J.; Cao, G. P.; Kang, F. Y.; Yang, Y. S. Porous carbon for electrochemical capacitors prepared from a resorcinol/formaldehyde-based organic aquagel with nano-sized particles. J. Mater. Chem. 2012, 22, 7158-7163.

46

Yi, H. T.; Zhu, Y. Q.; Chen, X. Y.; Zhang, Z. J. A simple Mg(OH)2-assisted template carbonization method to N- doped nanoporous carbon material from phenidone and the capacitive improvement with the addition of azobisformamide. Electrochim. Acta 2015, 174, 111-119.

47

Su, F. B.; Lv, L.; Lee, F. Y.; Liu, T.; Cooper, A. I.; Zhao, X. S. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics. J. Am. Chem. Soc. 2007, 129, 14213-14223.

48

Zahmakıran, M.; Tonbul, Y.; Özkar, S. Ruthenium(0) nanoclusters stabilized by a nanozeolite framework: Isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime. J. Am. Chem. Soc. 2010, 132, 6541-6549.

49

Roucoux, A.; Schulz, J.; Patin, H. Reduced transition metal colloids: A novel family of reusable catalysts? Chem. Rev. 2002, 102, 3757-3778.

50

Antonetti, C.; Oubenali, M.; Raspolli Galletti, A. M.; Serp, P.; Vannucci, G. Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Appl. Catal. A 2012, 421-422, 99-107.

51

Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072-1079.

52

Nie, R. F.; Miao, M.; Du, W. C.; Shi, J. J.; Liu, Y. C.; Hou, Z. Y. Selective hydrogenation of C=C bond over N-doped reduced graphene oxides supported Pd catalyst. Appl. Catal. B 2016, 180, 607-613.

53

Xu, X.; Li, H. R.; Wang, Y. Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbon derived from ionic-liquid precursors. ChemCatChem 2014, 6, 3328-3332.

54

Mondal, J.; Kundu, S. K.; Hung Ng, W. K.; Singuru, R.; Borah, P.; Hirao, H.; Zhao, Y. L.; Bhaumik, A. Fabrication of ruthenium nanoparticles in porous organic polymers: Towards advanced heterogeneous catalytic nanoreactors. Chem. —Eur. J. 2015, 21, 19016-19027.

55

Xu, X.; Tang, M. H.; Li, M. M.; Li, H. R.; Wang, Y. Hydrogenation of benzoic acid and derivatives over Pd nanoparticles supported on N-doped carbon derived from glucosamine hydrochloride. ACS Catal. 2014, 4, 3132-3135.

Nano Research
Pages 3129-3140
Cite this article:
Li M, Tang M, Deng J, et al. Nitrogen-doped flower-like porous carbon materials directed by in situ hydrolysed MgO: Promising support for Ru nanoparticles in catalytic hydrogenations. Nano Research, 2016, 9(10): 3129-3140. https://doi.org/10.1007/s12274-016-1195-6

638

Views

23

Crossref

N/A

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 21 May 2016
Revised: 30 June 2016
Accepted: 03 July 2016
Published: 30 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return