AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity

Zhiyi Lu1Li Qian1Wenwen Xu1Yang Tian1Ming Jiang1Yaping Li1Xiaoming Sun1,2( )Xue Duan1
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
Institute for New Energy Materials and Low-Carbon TechnologiesTianjin University of TechnologyTianjin300384China
Show Author Information

Graphical Abstract

Abstract

Layered double hydroxides (LDHs) are a class of two-dimensional (2D) layered materials with extensive applications and well-developed synthesizing methods in aqueous media. In this work, we introduce an alcohothermal synthesis method for fabricating NiFe-LDHs with dehydrated galleries. The proposed process involves incomplete hydrolysis of urea for the simultaneous precipitation of metal ions, with the resulting water-deficient ethanol environment leading to the formation of a dehydrated structure. The formation of a gallery-dehydrated layer structure was confirmed by X-ray diffraction (XRD), as well as by a subsequent rehydration process. The methodology introduced here is also applicable for fabricating Fe-based LDHs (NiFe-LDH and NiCoFe-LDH) nanoarrays, which cannot be produced under the same conditions in aqueous media because of the different precipitation processes involved. The LDH nanoarrays exhibit excellent electrocatalytic performance in the oxygen evolution reaction, as a result of their high intrinsic activity and unique structural features. In summary, this study not only introduces a new method for synthesizing LDH materials, but also provides a new route towards highly active and robust electrodes for electrocatalysis.

Electronic Supplementary Material

Download File(s)
nr-9-10-3152_ESM.pdf (2 MB)

References

1

Evans, D. G.; Duan, X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun. 2006, 485-496.

2

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124-4155.

3

Guo, X. X.; Zhang, F. Z.; Evans, D. G.; Duan, X. Layered double hydroxide films: Synthesis, properties and applications. Chem. Commun. 2010, 46, 5197-5210.

4

Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040-7066.

5

Feng, J. T.; He, Y. F.; Liu, Y. R.; Du, Y. Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291-5319.

6

Huang, G. B.; Fei, Z. D.; Chen, X. Y.; Qiu, F. L.; Wang, X.; Gao, J. R. Functionalization of layered double hydroxides by intumescent flame retardant: Preparation, characterization, and application in ethylene vinyl acetate copolymer. Appl. Surf. Sci. 2012, 258, 10115-10122.

7

Choy, J. H.; Choi, S. J.; Oh, J. M.; Park, T. Clay minerals and layered double hydroxides for novel biological applications. Appl. Clay Sci. 2007, 36, 122-132.

8

Li, L.; Gu, W. Y.; Liu, J.; Yan, S. Y.; Xu, Z. P. Amine- functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. Nano Res. 2015, 8, 682-694.

9

Carja, G.; Grosu, E. F.; Petrarean, C.; Nichita, N. Self- assemblies of plasmonic gold/layered double hydroxides with highly efficient antiviral effect against the hepatitis B virus. Nano Res. 2015, 8, 3512-3523.

10

Yan, D. P.; Lu, J.; Wei, M.; Han, J. B.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-by-layer assembly. Angew. Chem., Int. Ed. 2009, 48, 3073-3076.

11

Qian, L.; Lu, Z. Y.; Xu, T. H.; Wu, X. C.; Tian, Y.; Li, Y. P.; Huo, Z. Y.; Sun, X. M.; Duan, X. Trinary layered double hydroxides as high-performance bifunctional materials for oxygen electrocatalysis. Adv. Energy Mater. 2015, 5, 1500245.

12

Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713-725.

13

Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Sci. China Mater. 2015, 58, 944-952.

14

Yan, D. P.; Lu, J.; Ma, J.; Qin, S. H.; Wei, M.; Evans, D. G.; Duan, X. Layered host-guest materials with reversible piezochromic luminescence. Angew. Chem., Int. Ed. 2011, 50, 7037-7040.

15

Yan, D. P.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: Experimental and theoretical perspectives. J. Mater. Chem. 2011, 21, 13128-13139.

16

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.

17

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584-7588.

18

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

19

Luo, J. S.; Im, J. -H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. -G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2014, 345, 1593-1596.

20

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

21

Gong, M.; Wang, D. -Y.; Chen, C. -C.; Hwang, B. -J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.

22
He, J.; Wei, M.; Li, B.; Kang, Y.; Evans, D. G.; Duan, X. Preparation of layered double hydroxides. In Layered Double Hydroxides; Duan, X.; Evans, D. G., Eds.; Springer: Berlin Heidelberg, 2006; pp 89-119.https://doi.org/10.1007/430_006
23

Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem. Mater. 2002, 14, 4286-4291.

24

Morel-Desrosiers, N.; Pisson, J.; Israëli, Y.; Taviot-Guého, C.; Besse, J. P.; Morel, J. P. Intercalation of dicarboxylate anions into a Zn-Al-Cl layered double hydroxide: Microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem. 2003, 13, 2582-2585.

25

Oh, J. M.; Hwang, S. H.; Choy, J. H. The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 2002, 151, 285-291.

26

Prevot, V.; Forano, C.; Khenifi, A.; Ballarin, B.; Scavetta, E.; Mousty, C. A templated electrosynthesis of macroporous NiAl layered double hydroxides thin films. Chem. Commun. 2011, 47, 1761-1763.

27

Forticaux, A.; Dang, L. N.; Liang, H. F.; Jin, S. Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations. Nano Lett. 2015, 15, 3403-3409.

28

Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421-1427.

29

Liu, Z. P.; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006, 128, 4872-4880.

30

Ma, R. Z.; Liu, Z. P.; Takada, K.; Iyi, N.; Bando, Y.; Sasaki, T. Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: An innovative topochemical approach. J. Am. Chem. Soc. 2007, 129, 5257-5263.

31

Hu, G.; O'Hare, D. Unique layered double hydroxide morphologies using reverse microemulsion synthesis. J. Am. Chem. Soc. 2005, 127, 17808-17813.

32

Yu, J. F.; Martin, B. R.; Clearfield, A.; Luo, Z. P.; Sun, L. Y. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448-9451.

33

Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934-942.

34

Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479-6482.

35

Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918-7925.

36

Pérez-Ramírez, J.; Mul, G.; Kapteijn, F.; Moulijn, J. A. In situ investigation of the thermal decomposition of Co-Al hydrotalcite in different atmospheres. J. Mater. Chem. 2001, 11, 821-830.

37

Kovanda, F.; Rojka, T.; Bezdička, P.; Jirátová, K.; Obalová, L.; Pacultová, K.; Bastl, Z.; Grygar, T. Effect of hydrothermal treatment on properties of Ni-Al layered double hydroxides and related mixed oxides. J. Solid State Chem. 2009, 182, 27-36.

38

Kovanda, F.; Rojka, T.; Dobešová, J.; Machovič, V.; Bezdička, P.; Obalová, L.; Jirátová, K.; Grygar, T. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties. J. Solid State Chem. 2006, 179, 812-823.

39

Lin, Y. J.; Li, D. Q.; Evans, D. G.; Duan, X. Modulating effect of Mg-Al-CO3 layered double hydroxides on the thermal stability of PVC resin. Polym. Degrad. Stabil. 2005, 88, 286-293.

40

Saber, O.; Hatano, B.; Tagaya, H. Controlling of the morphology of Co-Ti LDH. Mater. Sci. Eng. C 2005, 25, 462-471.

41

Gennequin, C.; Cousin, R.; Lamonier, J. F.; Siffert, S.; Aboukais, A. Toluene total oxidation over Co supported catalysts synthesised using "memory effect" of Mg-Al hydrotalcite. Catal. Commun. 2008, 9, 1639-1643.

42

Ferreira, O. P.; Alves, O. L.; Gouveia, D. X.; Souza Filho, A. G.; de Paiva, J. A. C.; Filho, J. M. Thermal decomposition and structural reconstruction effect on Mg-Fe-based hydrotalcite compounds. J. Solid State Chem. 2004, 177, 3058-3069.

43

Pavel, O. D.; Bîrjega, R.; Che, M.; Costentin, G.; Angelescu, E.; Şerban, S. The activity of Mg/Al reconstructed hydrotalcites by "memory effect" in the cyanoethylation reaction. Catal. Commun. 2008, 9, 1974-1978.

44

Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940-4947.

45

Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.

46

Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168-4175.

47

Li, Y. G.; Hasin, P.; Wu, Y. Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926-1929.

48

Wang, J.; Zhong, H. -X.; Qin, Y. -L.; Zhang, X. -B. An efficient three-dimensional oxygen evolution electrode. Angew. Chem., Int. Ed. 2013, 52, 5248-5253.

49

Lu, Z. Y.; Wu, X. C.; Jiang, M.; Wang, J. N.; Liu, J. F.; Lei, X. D.; Sun, X. M. Transition metal oxides/hydroxides nanoarrays for aqueous electrochemical energy storage systems. Sci. China Mater. 2014, 57, 59-69.

50

Castro, E. B.; Gervasi, C. A. Electrodeposited Ni-Co-oxide electrodes: Characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrogen Energy 2000, 25, 1163-1170.

51

Landon, J.; Demeter, E.; Inoğlu, N.; Keturakis, C.; Wachs, I. E.; Vasić, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793-1801.

52

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.

53

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753.

54

Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155-161.

55

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60-63.

56

Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

57

Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal three- dimensional electrode structures for electrochemical energy storage. Adv. Mater. 2014, 26, 2440-2445.

58

Ellis, B. L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368-3397.

59

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

60

Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277-281.

61

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

62

Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361-2366.

63

Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683-2687.

64

Lu, Z. Y.; Li, Y. J.; Lei, X. D.; Liu, J. F.; Sun, X. M. Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes. Mater. Horiz. 2015, 2, 294-298.

Nano Research
Pages 3152-3161
Cite this article:
Lu Z, Qian L, Xu W, et al. Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Research, 2016, 9(10): 3152-3161. https://doi.org/10.1007/s12274-016-1197-4

574

Views

32

Crossref

N/A

Web of Science

33

Scopus

1

CSCD

Altmetrics

Received: 31 May 2016
Revised: 02 July 2016
Accepted: 03 July 2016
Published: 30 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return