Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiSx) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of > 500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiSx as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.
Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.
Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067-2081.
Ye, H. L.; Wang, Y. Y.; Zhao, F. P.; Huang, W. J.; Han, N.; Zhou, J. H.; Zeng, M.; Li, Y. G. Iron-based sodium-ion full batteries. J. Mater. Chem. A 2016, 4, 1754-1761.
Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754-21759.
Hu, P.; Wang, X. F.; Ma, J.; Zhang, Z. H.; He, J. J.; Wang, X. G.; Shi, S. Q.; Cui, G. L.; Chen, L. Q. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016, 26, 382-391.
Liu, Y. P.; Wang, H. T.; Cheng, L.; Han, N.; Zhao, F. P.; Li, P. R.; Jin, C. H.; Li, Y. G. TiS2 nanoplates: A high-rate and stable electrode material for sodium ion batteries. Nano Energy 2016, 20, 168-175.
Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595-1603.
Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. —Eur. J. 2014, 20, 11980-11992.
Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899-17913.
Yang, E.; Ji, H.; Jung, Y. Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes. J. Phys. Chem. C 2015, 119, 26374-26380.
Manthiram, A.; Yu, X. W. Ambient temperature sodium-sulfur batteries. Small 2015, 11, 2108-2114.
Kim, J. S.; Ahn, H. J.; Ryu, H. S.; Kim, D. J.; Cho, G. B.; Kim, K. W.; Nam, T. H.; Ahn, J. H. The discharge properties of Na/Ni3S2 cell at ambient temperature. J. Power Sources 2008, 178, 852-856.
Qin, W.; Chen, T. Q.; Lu, T.; Chua, D. H. C.; Pan, L. K. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries. J. Power Sources 2016, 302, 202-209.
Shang, C. Q.; Dong, S. M.; Zhang, S. L.; Hu, P.; Zhang, C. J.; Cui, G. L. A Ni3S2-PEDOT monolithic electrode for sodium batteries. Electrochem. Commun. 2015, 50, 24-27.
Go, D. Y.; Park, J.; Noh, P. J.; Cho, G. B.; Ryu, H. S.; Nam, T. H.; Ahn, H. J.; Kim, K. W. Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries. Mater. Res. Bull. 2014, 58, 190-194.
Ryu, H. S.; Kim, J. S.; Park, J.; Park, J. Y.; Cho, G. B.; Liu, X. J.; Ahn, I. S.; Kim, K. W.; Ahn, J. H.; Ahn, J. P. et al. Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying. J. Power Sources 2013, 244, 764-770.
Pan, Q.; Xie, J.; Zhu, T. J.; Cao, G. S.; Zhao, X. B.; Zhang, S. C. Reduced graphene oxide-induced recrystallization of NiS nanorods to nanosheets and the improved Na-storage properties. Inorg. Chem. 2014, 53, 3511-3518.
Wang, T. S.; Hu, P.; Zhang, C. J.; Du, H. P.; Zhang, Z. H.; Wang, X. G.; Chen, S. G.; Xiong, J. W.; Cui, G. L. Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl. Mater. Interfaces 2016, 8, 7811-7817.
Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.
Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-430.
Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057-5115.
Wang, X. X.; Wang, B.; Zhong, J.; Zhao, F. P.; Han, N.; Huang, W. J.; Zeng, M.; Fan, J.; Li, Y. G. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016, 9, 1497-1506.
Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245-4269.