AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors

Fei Sun1,2Haobin Wu2Xin Liu1Fang Liu2Huihui Zhou2Jihui Gao1Yunfeng Lu2( )
School of Energy Science and EngineeringHarbin Institute of TechnologyHarbin150001China
Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesCA90095USA
Show Author Information

Graphical Abstract

Abstract

Supercapacitors have high power densities, high efficiencies, and long cycling lifetimes; however, to enable their wider use, their energy densities must be significantly improved. The design and synthesis of improved carbon materials with better capacitance, rate performance, and cycling stability has emerged as the main theme of supercapacitor research. Herein, we report a facile synthetic method to prepare nitrogen-rich carbon particles based on a continuous aerosol-spraying process. The method yields particles that have high surface areas, a uniform microporous structure, and are highly N-doped, resulting in a synergism that enables the construction of supercapacitors with high energy and power density for use in both aqueous and commercial organic electrolytes. Furthermore, we have used density functional theory calculations to show that the improved performance is due to the enhanced wettability and ion adsorption interactions at the carbon/electrolyte interface that result from nitrogen doping. These findings provide new insights into the role of heteroatom doping in the capacitance enhancement of carbon materials; in addition, our method offers an efficient route for large-scale production of doped carbon.

Electronic Supplementary Material

Download File(s)
12274_2016_1199_MOESM1_ESM.pdf (2.2 MB)

References

1

Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.

2

Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

3

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

4

Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828-4850.

5

Zhao, J.; Lai, H. W.; Lyu, Z. Y.; Jiang, Y. F.; Xie, K.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Jin, Z.; Ma, Y. W. et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 2015, 27, 3541-3545.

6

Peng, C.; Yan, X. B.; Wang, R. T.; Lang, J. W.; Qu, Y. J.; Xue, Q. J. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim. Acta 2013, 87, 401-408.

7

Izadi-Najafabadi, A.; Yasuda, S.; Kobashi, K.; Yamada, T.; Futaba, D. N.; Hatori, H.; Yumura, M.; Iijima, S.; Hata, K. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 2010, 22, E235-E241.

8

Xu, P.; Gu, T. L.; Cao, Z. Y.; Wei, B. Q.; Yu, J. Y.; Li, F. X.; Byun, J. Y.; Lu, W. B.; Chou, T. W. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 2014, 4, 1300759.

9

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.

10

Gao, P. C.; Tsai, W. Y.; Daffos, B.; Taberna, P. L.; Pérez, C. R.; Gogotsi, Y.; Simon, P.; Favier, F. Graphene-like carbide derived carbon for high-power supercapacitors. Nano Energy 2015, 12, 197-206.

11

Boukhalfa, S.; Gordon, D.; He, L. L.; Melnichenko, Y. B.; Nitta, N.; Magasinski, A.; Yushin G. In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors. ACS Nano 2014, 8, 2495-2503.

12

Wei, J.; Zhou, D. D.; Sun, Z. K.; Deng, Y. H.; Xia, Y. Y.; Zhao, D. Y. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 2013, 23, 2322-2328.

13

Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, M. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871-878.

14

Chen, Z.; Wen, J.; Yan, C. Z.; Rice, L.; Sohn, H.; Shen, M. Q.; Cai, M.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on hierarchically porous graphite particles. Adv. Energy Mater. 2011, 1, 551-556.

15

Wen, Y. Y.; Wang, B.; Huang, C. C.; Wang, L. Z.; Hulicova-Jurcakova, D. Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. —Eur. J. 2015, 21, 80-85.

16

Wang, D. W.; Li, F.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 2008, 20, 7195-7200.

17

Chen, W. Z.; Shi, J. J.; Zhu, T. S.; Wang, Q.; Qiao, J. L.; Zhang, J. J. Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability. Electrochim. Acta 2015, 177, 327-334.

18

Sun, L.; Tian, C. G.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H. G. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem. —Eur. J. 2014, 20, 564-574.

19

Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. G.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717-724.

20

Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z. H.; Lu, G. Q. Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 2009, 19, 1800-1809.

21

Ornelas, O.; Sieben, J. M.; Ruiz-Rosas, R.; Morallón, E.; Cazorla-Amorós, D.; Geng, J.; Soin, N.; Siores, E.; Johnson, B. F. G. On the origin of the high capacitance of nitrogen-containing carbon nanotubes in acidic and alkaline electrolytes. Chem. Commun. 2014, 50, 11343-11346.

22

Long, C. L.; Qi, D. P.; Wei, T.; Yan, J.; Liang, L. L.; Fan, Z. J. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 2014, 24, 3953-3961.

23

Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092-7102.

24

Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839-2855.

25

Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

26

Ning, X. T.; Zhong, W. B.; Li, S. C.; Wang, Y. X; Yang, W. T. High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J. Mater. Chem. A 2014, 2, 8859-8867.

27

Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556-2564.

28

Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y. K.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768-771.

29

Jung, D. S.; Ko, Y. N.; Kang, Y. C.; Park, S. B. Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries. Adv. Powder Technol. 2014, 25, 18-31.

30

Jia, X. L.; Chen, Z.; Cui, X.; Peng, Y. T.; Wang, X. L.; Wang, G.; Wei, F.; Lu, Y. F. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 2012, 6, 9911-9919.

31

Hampsey, J. E.; Hu, Q. Y.; Rice, L.; Pang, J. B.; Wu, Z. W.; Lu, Y. F. A general approach towards hierarchical porous carbon particles. Chem. Commun. 2005, 3606-3608.

32

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C. et al. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford CT, 2004.

33

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.

34

Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463-5671.

35

Zhang, D. Y.; Zheng, L. W.; Ma, Y.; Lei, L. Y.; Li, Q. L.; Li, Y.; Luo, H. M.; Feng, H. X.; Hao, Y. Synthesis of nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 2657-2665.

36

Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. 2013, 125, 3192-3198.

37

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394-4403.

38

Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Func. Mater. 2014, 24, 1243-1250.

39

Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. T. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498-6506.

40

Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M. D.; Qiu, J. S. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 2015, 5, 1401761.

41

Cheng, P.; Gao, S. Y.; Zang, P. Y.; Yang, X. F.; Bai, Y. L.; Xu, H.; Liu, Z. H.; Lei, Z. B. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 2015, 93, 315-324.

42

Hao, G. P.; Lu, A. H.; Dong, W.; Jin, Z. Y.; Zhang. X. Q.; Zhang, J. T.; Li, W. C. Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv. Energy Mater. 2013, 3, 1421-1427.

43

Zhou, L.; Cao, H.; Zhu, S. Q.; Hou, L. R.; Yuan, C. Z. Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 2015, 17, 2373-2382.

44

Li, S. M.; Yang, S. Y.; Wang, Y. S.; Tsai, H. P.; Tien, H. W.; Hsiao, S. T.; Liao, W. H.; Chang, C. H.; Ma, C. H.; Hu, C. H. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. J. Power Sources 2015, 278, 218-229.

Nano Research
Pages 3209-3221
Cite this article:
Sun F, Wu H, Liu X, et al. Nitrogen-rich carbon spheres made by a continuous spraying process for high-performance supercapacitors. Nano Research, 2016, 9(11): 3209-3221. https://doi.org/10.1007/s12274-016-1199-2

715

Views

81

Crossref

N/A

Web of Science

81

Scopus

8

CSCD

Altmetrics

Received: 19 April 2016
Revised: 12 June 2016
Accepted: 04 July 2016
Published: 01 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return