AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Direct self-assembly of CTAB-capped Au nanotriangles

Qiang Fu1,2,3Guangjun Ran1Weilin Xu1( )
State Key Laboratory of Electroanalytical Chemistryand Jilin Province Key Laboratory of Low Carbon Chemical PowerChangchun Institute of Applied ChemistryChinese Academy of ScienceChangchun130022China
College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
Graduate University of Chinese Academy of ScienceBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Densely packed and ordered "suprastructures" are new types of nanomaterials exhibiting broad applications. The direct self-assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanotriangles to form "suprastructures" was systematically investigated by varying the temperature and tilt angle of the silicon wafer used in the assembly process. Under optimal conditions, nanotriangles form into regular patterns, maintain their integrity, and form edge-to-edge, point-to-point, and face-to-face connections to form ordered "suprastructures" within an area of hundreds of square microns, achieving a high level of regularity. The formation of the "suprastructures" under optimal conditions could be mainly attributed to the complex balance between multiple temperature-dependent factors, including the atom diffusion rate, solvent evaporation rate, self-assembly rate, and the time for which the nanoparticle stays in the wet medium.

Electronic Supplementary Material

Download File(s)
12274_2016_1203_MOESM1_ESM.pdf (2.8 MB)

References

1

Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area. J. Phys. Chem. B 2002, 106, 11463-11468.

2

Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229-232.

3

Zayats, M.; Kharitonov, A. B.; Pogorelova, S. P.; Lioubashevski, O.; Katz, E.; Willner, I. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003, 125, 16006-16014.

4

Fu, Q.; Sheng, Y. P.; Tang, H. J.; Zhu, Z. N.; Ruan, M. B.; Xu, W. L.; Zhu, Y. T.; Tang, Z. Y. Growth mechanism deconvolution of self-limiting supraparticles based on microfluidic system. ACS Nano 2015, 9, 172-179.

5

Gao, Y.; Tang, Z. Y. Design and application of inorganic nanoparticle superstructures: Current status and future challenges. Small 2011, 7, 2133-2146.

6

Xia, Y. S.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 2011, 6, 580-587.

7

Xia, Y. S.; Tang, Z. Y. Monodisperse hollow supraparticles via selective oxidation. Adv. Funct. Mater. 2012, 22, 2585-2593.

8

Xiong, Y. S.; Deng, K.; Jia, Y. Y.; He, L. C.; Chang, L.; Zhi, L. J.; Tang, Z. Y. Crucial role of anions on arrangement of Cu2S nanocrystal superstructures. Small 2014, 10, 1523-1528.

9

Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. 2008, 120, 9831-9836.

10

Talapin, D. V.; Shevchenko, E. V.; Bodnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 2009, 461, 964-967.

11

Bishop, K. J. M.; Grzybowski, B. A. "Nanoions": Fundamental properties and analytical applications of charged nanoparticles. ChemPhysChem 2007, 8, 2171-2176.

12

Guerrero-Martínez, A.; Pérez-Juste, J.; Carbó-Argibay, E.; Tardajos, G.; Liz-Marzán, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem., Int. Ed. 2009, 48, 9484-9488.

13

Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55-59.

14

Talapin, D. V.; Lee, J. -S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389-458.

15

Kalsin, A. M.; Grzybowski, B. A. Controlling the growth of "ionic" nanoparticle supracrystals. Nano Lett. 2007, 7, 1018-1021.

16

Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420-424.

17

Kowalczyk, B.; Kalsin, A. M.; Orlik, R.; Bishop, K. J. M.; Patashinskii, A. Z.; Mitus, A.; Grzybowski, B. A. Size selection during crystallization of oppositely charged nanoparticles. Chem. —Eur. J. 2009, 15, 2032-2035.

18

Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553-556.

19

Walker, D. A.; Browne, K. P.; Kowalczyk, B.; Grzybowski, B. A. Self-assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions. Angew. Chem., Int. Ed. 2010, 49, 6760-6763.

20

Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923-1928.

21

Gopinath, A.; Boriskina, S. V.; Premasiri, W. R.; Ziegler, L.; Reinhard, B. M.; Dal Negro, L. Plasmonic nanogalaxies: Multiscale aperiodic arrays for surface-enhanced Raman sensing. Nano Lett 2009, 9, 3922-3929.

22

Diebold, E. D.; Peng, P.; Mazur, E. Isolating surface-enhanced Raman scattering hot spots using multiphoton lithography. J. Am. Chem. Soc. 2009, 131, 16356-16357.

23

Yap, F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano 2012, 6, 2056-2070.

24

Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006-5013.

25

Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 2013, 12, 165-171.

26

Bogaerts, W.; Wiaux, V.; Dumon, P.; Taillaert, D.; Wouters, J.; Beckx, S.; Van Campenhout, J.; Luyssaert, B.; Van Thourhout, D.; Baets, R. Large-scale production techniques for photonic nanostructures. In Proceedings of the SPIE 5225, Nano- and Micro-Optics for Information Systems, San Diego, California, USA, 2003, pp 101-112.

27

Viarbitskaya, S.; Teulle, A.; Marty, R.; Sharma, J.; Girard, C.; Arbouet, A.; Dujardin, E. Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms. Nat. Mater. 2013, 12, 426-432.

28

Huang, J. -S.; Callegari, V.; Geisler, P.; Brüning, C.; Kern, J.; Prangsma, J. C.; Wu, X. F.; Feichtner, T.; Ziegler, J.; Weinmann, P. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 2010, 1, 150.

29

Lee, Y. H.; Lee, C. K.; Tan, B. R.; Tan, J. M. R.; Phang, I. Y.; Ling, X. Y. Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404-6412.

30

Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833-5842.

31

Boyack, R.; Le Ru, E. C. Investigation of particle shape and size effects in SERS using T-matrix calculations. Phys. Chem. Chem. Phys. 2009, 11, 7398-7405.

32

Nikoobakht, B.; Wang, J. P.; El-Sayed, M. A. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: Off-surface plasmon resonance condition. Chem. Phys. Lett. 2002, 366, 17-23.

33

Chaney, S. B.; Shanmukh, S.; Dluhy, R. A.; Zhao, Y. -P. Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. App. Phys. Lett. 2005, 87, 031908.

34

Nie, S.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.

35

Hao, E. C.; Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357-366.

36

Sau, T. K.; Murphy, C. J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 2005, 21, 2923-2929.

37

Sun, M. J.; Ran, G. J.; Fu, Q.; Xu, W. L. The effect of iodide on the synthesis of gold nanoprisms. J. Exp. Nanosci. 2015, 10, 1309-1318.

38

Ha, T. H.; Koo, H. -J.; Chung, B. H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C 2007, 111, 1123-1130.

39

DuChene, J. S.; Niu, W. X.; Abendroth, J. M.; Sun, Q.; Zhao, W. B.; Huo, F. W.; Wei, W. D. Halide anions as shape-directing agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2013, 25, 1392-1399.

40

Xu, W.; Sandor, M. T.; Yu, Y.; Ke, H. -B.; Zhang, H. -P.; Li, M. -Z.; Wang, W. -H.; Liu, L.; Wu, Y. Evidence of liquid-liquid transition in glass-forming La50Al35Ni15 melt above liquidus temperature. Nat. Commun. 2015, 6, 7696.

41

Jakubczyk, D.; Zientara, M.; Kolwas, K.; Kolwas, M. Temperature dependence of evaporation coefficient for water measured in droplets in nitrogen under atmospheric pressure. J. Atmos. Sci. 2007, 64, 996-1004.

42

Jones, C. A. R.; Liang, L.; Lin, D.; Jiao, Y.; Sun, B. The spatial-temporal characteristics of type Ⅰ collagen-based extracellular matrix. Soft Matter 2014, 10, 8855-8863.

43

Cintron, T., Jr. Evaporation rate of water and it's relation to temperature[Online]. 2005. http://tuhsphysics.ttsd.k12.or.us/Research/IB05/Cintron/tonycintronres.htm#data (accessed Feb 22, 2016).

44

Pileni, M.; Lalatonne, Y.; Ingert, D.; Lisiecki, I.; Courty, A. Self assemblies of nanocrystals: Preparation, collective properties and uses. Faraday Discuss. 2004, 125, 251-264.

45

Liz-Marzán, L. M.; Mulvaney, P. The assembly of coated nanocrystals. J. Phys. Chem. B 2003, 107, 7312-7326.

46

Lin, X. M.; Parthasarathy, R.; Jaeger, H. M. Direct patterning of self-assembled nanocrystal monolayers by electron beams. App. Phys. Lett. 2001, 78, 1915-1917.

47

Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153-1175.

48

Adams, M.; Dogic, Z.; Keller, S. L.; Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 1998, 393, 349-352.

49

Whitesides, G. M.; Boncheva, M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 2002, 99, 4769-4774.

50

van Blaaderen, A. Colloids under external control. MRS Bull. 2004, 29, 85-90.

Nano Research
Pages 3247-3256
Cite this article:
Fu Q, Ran G, Xu W. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Research, 2016, 9(11): 3247-3256. https://doi.org/10.1007/s12274-016-1203-x

631

Views

21

Crossref

N/A

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 22 February 2016
Revised: 05 July 2016
Accepted: 06 July 2016
Published: 01 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return