AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Core–shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation

Xuan Yi1Lei Chen1Xiaoyan Zhong1Roulin Gao1Yitao Qian1Fan Wu1Guosheng Song2Zhifang Chai1Zhuang Liu2Kai Yang1( )
School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhou215123China
Institute of Functional Nano & Soft Materials (FUNSOM)Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123China
Show Author Information

Graphical Abstract

Abstract

Local hypoxia in solid tumors often results in resistance to radiotherapy (RT), in which oxygen is an essential element for enhancing DNA damage caused by ionizing radiation. Herein, we developed gold@manganese dioxide (Au@MnO2) core–shell nanoparticles with a polyethylene glycol (PEG) coating as a novel radiosensitizing agent to improve RT efficacy during cancer treatment. In this Au@MnO2 nanostructure, while the gold core is a well-known RT sensitizer that interacts with X-rays to produce charged particles for improved cancer killing under RT, the MnO2 shell may trigger the decomposition of endogenous H2O2 in the tumor microenvironment to generate oxygen and overcome hypoxiaassociated RT resistance. As demonstrated by both in vitro and in vivo experiments, Au@MnO2-PEG nanoparticles acted as effective radiosensitizers to remarkably enhance cancer treatment efficacy during RT. Moreover, no obvious side effects of Au@MnO2-PEG were observed in mice. Therefore, our work presents a new type of radiosensitizer with potential for enhanced RT treatment of hypoxic tumors.

Electronic Supplementary Material

Download File(s)
12274_2016_1205_MOESM1_ESM.pdf (2.4 MB)

References

1

Barker, H. E.; Paget, J. T. E.; Khan, A. A.; Harrington, K. J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409-425.

2

Weitzel, D. H.; Tovmasyan, A.; Ashcraft, K. A.; Rajic, Z.; Weitner, T.; Liu, C.; Li, W.; Buckley, A. F.; Prasad, M. R.; Young, K. H. et al. Radioprotection of the brain white matter by Mn(Ⅲ) n-butoxyethylpyridylporphyrin-based superoxide dismutase mimic MnTnBuOE-2-PyP5+. Mol. Cancer Ther. 2015, 14, 70-79.

3

Zhou, Y.; Hua, S.; Yu, J. H.; Dong, P.; Liu, F. J.; Hua, D. B. A strategy for effective radioprotection by chitosan-based long-circulating nanocarriers. J. Mater. Chem. B 2015, 3, 2931-2934.

4

Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410-10488.

5

Zhang, X. -D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. -M.; Liu, P. -X.; Liang, X. -J. Size-dependent radiosensitization of peg-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33, 6408-6419.

6

Wang, P. P.; Yu, Q. Y.; Long, Y.; Hu, S.; Zhuang, J.; Wang, X. Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res. 2012, 5, 283-291.

7

Brown, R.; Tehei, M.; Oktaria, S.; Briggs, A.; Stewart, C.; Konstantinov, K.; Rosenfeld, A.; Corde, S.; Lerch, M. High-Z nanostructured ceramics in radiotherapy: First evidence of Ta2O5-induced dose enhancement on radioresistant cancer cells in an MV photon field. Part. Part. Syst. Char. 2014, 31, 500-505.

8

Chen, H. M.; Wang, G. D.; Chuang, Y. -J.; Zhen, Z. P.; Chen, X. Y.; Biddinger, P.; Hao, Z. L.; Liu, F.; Shen, B. Z.; Pan, Z. W. et al. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Lett. 2015, 15, 2249-2256.

9

Fan, W. P.; Shen, B.; Bu, W. B.; Zheng, X. P.; He, Q. J.; Cui, Z. W.; Ni, D. L.; Zhao, K. L.; Zhang, S. J.; Shi, J. L. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials 2015, 69, 89-98.

10

Kwatra, D.; Venugopal, A.; Anant, S. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res. 2013, 2, 330-342.

11

Ma, M.; Huang, Y.; Chen, H. R.; Jia, X. Q.; Wang, S. G.; Wang, Z. Z.; Shi, J. L. Bi2S3-embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization. Biomaterials 2015, 37, 447-455.

12

Zhang, X. -D.; Luo, Z.; Chen, J.; Song, S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y.; Gao, K.; Zhang, L. et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015, 5, 8669.

13

Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au10−12(SG)10−12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565-4568.

14

Her, S.; Jaffray, D. A.; Allen, C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev. , in press, DOI: 10.1016/j.addr.2015.12.012.

15

Al Zaki, A.; Joh, D.; Cheng, Z. L.; De Barros, A. L. B.; Kao, G.; Dorsey, J.; Tsourkas, A. Gold-loaded polymeric micelles for computed tomography-guided radiation therapy treatment and radiosensitization. ACS Nano 2014, 8, 104-112.

16

Yang, Y. -S.; Carney, R. P.; Stellacci, F.; Irvine, D. J. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes. ACS Nano 2014, 8, 8992-9002.

17

Jain, S.; Coulter, J. A.; Butterworth, K. T.; Hounsell, A. R.; McMahon, S. J.; Hyland, W. B.; Muir, M. F.; Dickson, G. R.; Prise, K. M.; Currell, F. J. et al. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions. Radiother. Oncol. 2014, 110, 342-347.

18

Cui, L.; Tse, K.; Zahedi, P.; Harding, S. M.; Zafarana, G.; Jaffray, D. A.; Bristow, R. G.; Allen, C. Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells. Radiat. Res. 2014, 182, 475-488.

19

Klemm, F.; Joyce, J. A. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015, 25, 198-213.

20

Siemann, D. W.; Horsman, M. R. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol. Ther. 2015, 153, 107-124.

21

Lin, A.; Maity, A. Molecular pathways: A novel approach to targeting hypoxia and improving radiotherapy efficacy via reduction in oxygen demand. Clin. Cancer Res. 2015, 21, 1995-2000.

22

Shimizu, N.; Ooka, M.; Takagi, T.; Takeda, S.; Hirota, K. Distinct DNA damage spectra induced by ionizing radiation in normoxic and hypoxic cells. Radiat. Res. 2015, 184, 442-448.

23

Baumann, M.; Krause, M.; Overgaard, J.; Debus, J.; Bentzen, S. M.; Daartz, J.; Richter, C.; Zips, D.; Bortfeld, T. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 2016, 16, 234-249.

24

Liu, Y. Y.; Liu, Y.; Bu, W. B.; Cheng, C.; Zuo, C. J.; Xiao, Q. F.; Sun, Y.; Ni, D. L.; Zhang, C.; Liu, J. et al. Hypoxia induced by upconversion-based photodynamic therapy: Towards highly effective synergistic bioreductive therapy in tumors. Angew. Chem., Int. Ed. 2015, 54, 8105-8109.

25

Fan, W. P.; Bu, W. B.; Zhang, Z.; Shen, B.; Zhang, H.; He, Q. J.; Ni, D. L.; Cui, Z. W.; Zhao, K. L.; Bu, J. W. et al. X-ray radiation-controlled no-release for on-demand depth-independent hypoxic radiosensitization. Angew. Chem., Int. Ed. 2015, 127, 14232-14236.

26

Diagaradjane, P.; Shetty, A.; Wang, J. C.; Elliott, A. M.; Schwartz, J.; Shentu, S.; Park, H. C.; Deorukhkar, A.; Stafford, R. J.; Cho, S. H. et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: Characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett. 2008, 8, 1492-1500.

27

Kunjachan, S.; Detappe, A.; Kumar, R.; Ireland, T.; Cameron, L.; Biancur, D. E.; Motto-Ros, V.; Sancey, L.; Sridhar, S.; Makrigiorgos, G. M. et al. Nanoparticle mediated tumor vascular disruption: A novel strategy in radiation therapy. Nano Lett. 2015, 15, 7488-7496.

28

Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.

29

Prasad, P.; Gordijo, C. R.; Abbasi, A. Z.; Maeda, A.; Ip, A.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y. Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 2014, 8, 3202-3212.

30

Fan, H. H.; Yan, G. B.; Zhao, Z. L.; Hu, X. X.; Zhang, W. H.; Liu, H.; Fu, X. Y.; Fu, T.; Zhang, X. B.; Tan, W. H. A smart photosensitizer-manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew. Chem., Int. Ed. 2016, 55, 5477-5482.

31

Song, G. S.; Liang, C.; Gong, H.; Li, M. F.; Zheng, X. C.; Cheng, L.; Yang, K.; Jiang, X. Q.; Liu, Z. Core-shell mnse@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 2015, 27, 6110-6117.

32

Yi, X.; Yang, K.; Liang, C.; Zhong, X. Y.; Ning, P.; Song, G. S.; Wang, D. L.; Ge, C. C.; Chen, C. Y.; Chai, Z. F. et al. Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanoparticles. Adv. Funct. Mater. 2015, 25, 4689-4699.

33

Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539-1547.

34

Chen, Y.; Ye, D. L.; Wu, M. Y.; Chen, H. R.; Zhang, L. L.; Shi, J. L.; Wang, L. Z. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 2014, 26, 7019-7026.

35

Song, M.; Liu, T.; Shi, C.; Zhang, X.; Chen, X. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 2016, 10, 633-647.

36

Yuan, J.; Cen, Y.; Kong, X. -J.; Wu, S.; Liu, C. -L.; Yu, R. Q.; Chu, X. MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl. Mater. Interfaces 2015, 7, 10548-10555.

37

Fan, H. H.; Zhao, Z. L.; Yan, G. B.; Zhang, X. B.; Yang, C.; Meng, H. M.; Chen, Z.; Liu, H.; Tan, W. H. A smart dnazyme-MnO2 nanosystem for efficient gene silencing. Angew. Chem., Int. Ed. 2015, 127, 4883-4887.

38

Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, R. W.; Zhang, X. B.; Tan, W. H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J. Am. Chem. Soc. 2014, 136, 11220-11223.

39

Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy. Adv. Mater. 2015, 27, 4155-4161.

40

Yang, Y.; Liu, J. J.; Sun, X. Q.; Feng, L. Z.; Zhu, W. W.; Liu, Z.; Chen, M. W. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res. 2016, 9, 139-148.

41

Yang, G. B.; Gong, H.; Qian, X. X.; Tan, P. L.; Li, Z. W.; Liu, T.; Liu, J. J.; Li, Y. Y.; Liu, Z. Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res. 2015, 8, 751-764.

42

Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990-1004.

43

Pan, D.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M. Manganese-based mri contrast agents: Past, present, and future. Tetrahedron 2011, 67, 8431-8444.

44

Pan, D.; Caruthers, S. D.; Senpan, A.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M. Revisiting an old friend: Manganese-based MRI contrast agents. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2011, 3, 162-173.

Nano Research
Pages 3267-3278
Cite this article:
Yi X, Chen L, Zhong X, et al. Core–shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Research, 2016, 9(11): 3267-3278. https://doi.org/10.1007/s12274-016-1205-8
Part of a topical collection:

806

Views

159

Crossref

N/A

Web of Science

168

Scopus

17

CSCD

Altmetrics

Received: 27 May 2016
Revised: 06 July 2016
Accepted: 06 July 2016
Published: 05 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return