Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rheumatoid arthritis (RA) etiology and amelioration remains a challenge in modern therapeutics. Herein, we explored the synergistic effect of allogenic bone marrow stem cell (BMSC) translation and photodynamic treatment of RA with tetra sulfonatophenyl porphyrin (TSPP) and TiO2 nanocomposites as a new strategy for RA theranostics. The translation of BMSCs with miRNAs into infected joints in long bones post-photodynamic therapy is helpful for treating and understanding RA pathophysiology. We observed that allogenic BMSC translation combined with TSPP-TiO2 nanocomposites can significantly (p < 0.01) lower the concentrations of serum biomarkers (tumor necrosis factor-α and interleukin-17) in a collagen induced arthritis (CIA) murine model, both in vitro and in vivo, as well as improve other parameters such as arthritis score, BMSC count, complete blood count, and numbers of platelets, red blood cells, and white blood cells. Moreover, a fluorescent TSPP in the feet or long bones and X-ray bioimaging of RA joints revealed the clinical efficacy of BMSCs combined with TSPP-TiO2 nanocomposites. Microarray data analysis illustrated that rno-mir-375-3p and rno-mir-196b-3p were up-regulated by approximately 100-fold in the BMSCs of ameliorated RA post-photodynamic therapy with TSPP-TiO2 nanocomposites. Our study not only suggests a new approach for RA theranostics, but also helps in understanding RA pathophysiology.
United Nations. Prevention and control of non-communicable diseases. Report of the Secretary-General. New York: United Nations, 2011.
Schuna, A. A. Update on treatment of rheumatoid arthritis. J. Am. Pharm. Assoc. (Wash.) 1998, 38, 728-735; quiz 735-737.
Rudan, I.; Sidhu, S.; Papana, A.; Meng, S. J.; Xin-Wei, Y.; Wang, W.; Campbell-Page, R. M.; Demaio, A. R.; Nair, H.; Sridhar, D. et al. Prevalence of rheumatoid arthritis in low-and middle-income countries: A systematic review and analysis. J. Glob. Health 2015, 5, 010409.
Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356-361.
Chen, L. J.; Bao, B.; Wang, N. P.; Xie, J.; Wu, W. H. Oral administration of shark type Ⅱ collagen suppresses complete Freund's adjuvant-induced rheumatoid arthritis in rats. Pharmaceuticals 2012, 5, 339-352.
Brennan, F. M.; Maini, R. N.; Feldmann, M. TNFα—A pivotal role in rheumatoid arthritis? Rheumatology 1992, 31, 293-298.
Chabaud, M.; Durand, J. M.; Buchs, N.; Fossiez, F.; Page, G.; Frappart, L.; Miossec, P. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999, 42, 963-970.
Ziolkowska, M.; Koc, A.; Luszczykiewicz, G.; Ksiezopolska-Pietrzak, K.; Klimczak, E.; Chwalinska-Sadowska, H.; Maslinski, W. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J. Immunol. 2000, 164, 2832-2838.
Grove, J. E.; Bruscia, E.; Krause, D. S. Plasticity of bone marrow-derived stem cells. Stem Cells 2004, 22, 487-500.
Taichman, R. S. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005, 105, 2631-2639.
Zappia, E.; Casazza, S.; Pedemonte, E.; Benvenuto, F.; Bonanni, I.; Gerdoni, E.; Giunti, D.; Ceravolo, A.; Cazzanti, F.; Frassoni, F. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005, 106, 1755-1761.
Liu, C. -H.; Hwang, S. -M. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 2005, 32, 270-279.
Maitra, B.; Szekely, E.; Gjini, K.; Laughlin, M. J.; Dennis, J.; Haynesworth, S. E.; Koc, O. N. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004, 33, 597-604.
Potian, J. A.; Aviv, H.; Ponzio, N. M.; Harrison, J. S.; Rameshwar, P. Veto-like activity of mesenchymal stem cells: Functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol. 2003, 171, 3426-3434.
Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P. D.; Matteucci, P.; Grisanti, S.; Gianni, A. M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99, 3838-3843.
Yoshida, Y.; Takahashi, K.; Okita, K.; Ichisaka, T.; Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 2009, 5, 237-241.
Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281-297.
He, L.; He, X. Y.; Lowe, S. W.; Hannon, G. J. MicroRNAs join the p53 network—Another piece in the tumour-suppression puzzle. Nat. Rev. Cancer 2007, 7, 819-822.
Esau, C.; Davis, S.; Murray, S. F.; Yu, X. X.; Pandey, S. K.; Pear, M.; Watts, L.; Booten, S. L.; Graham, M.; McKay, R. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3, 87-98.
Chen, C. -Z.; Li, L.; Lodish, H. F.; Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83-86.
Callis, T. E.; Chen, J. -F.; Wang, D. -Z. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007, 26, 219-225.
Calin, G. A.; Ferracin, M.; Cimmino, A.; Di Leva, G.; Shimizu, M.; Wojcik, S. E.; Iorio, M. V.; Visone, R.; Sever, N. I.; Fabbri, M. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 2005, 353, 1793-1801.
Hanson, E. K.; Lubenow, H.; Ballantyne, J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 2009, 387, 303-314.
Mitchell, P. S.; Parkin, R. K.; Kroh, E. M.; Fritz, B. R.; Wyman, S. K.; Pogosova-Agadjanyan, E. L.; Peterson, A.; Noteboom, J.; O'Briant, K. C.; Allen, A. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513-10518.
Stanczyk, J.; Pedrioli, D. M. L.; Brentano, F.; Sanchez-Pernaute, O.; Kolling, C.; Gay, R. E.; Detmar, M.; Gay, S.; Kyburz, D. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008, 58, 1001-1009.
Nakamachi, Y.; Kawano, S.; Takenokuchi, M.; Nishimura, K.; Sakai, Y.; Chin, T.; Saura, R.; Kurosaka, M.; Kumagai, S. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 2009, 60, 1294-1304.
Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889-905.
Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.
Zhao, C. Q.; Ur Rehman, F.; Yang, Y. L.; Li, X. Q.; Zhang, D.; Jiang, H.; Selke, M.; Wang, X. M.; Liu, C. Y. Bio-imaging and photodynamic therapy with tetra sulphonatophenyl porphyrin (TSPP)-TiO2 nanowhiskers: New approaches in rheumatoid arthritis theranostics. Sci. Rep. 2015, 5, 11518.
Rehman, F. U.; Zhao, C. Q.; Wu, C. Y.; Jiang, H.; Selke, M.; Wang, X. M. Influence of photoactivated tetra sulphonatophenyl porphyrin and TiO2 nanowhiskers on rheumatoid arthritis infected bone marrow stem cell proliferation in vitro and oxidative stress biomarkers in vivo. RSC Adv. 2015, 5, 107285-107292.
Benov, L.; Batinic-Haberle, I. A manganese porphyrin suppresses oxidative stress and extends the life span of streptozotocin-diabetic rats. Free Radic. Res. 2005, 39, 81-88.
Chu, Z. Q.; Zhang, S.; Yin, C.; Lin, G.; Li, Q. Designing nanoparticle carriers for enhanced drug efficacy in photodynamic therapy. Biomater. Sci. 2014, 2, 827-832.
Rehman, F. U.; Zhao, C. Q.; Jiang, H.; Selke, M.; Wang, X. M. Protective effect of TiO2 nanowhiskers on tetra sulphonatophenyl porphyrin (TSPP) complexes induced oxidative stress during photodynamic therapy. Photodiagnosis Photodyn. Ther. 2016, 13, 267-275.
Cai, R. X.; Hashimoto, K.; Itoh, K.; Kubota, Y.; Fujishima, A. Photokilling of malignant cells with ultrafine TiO2 powder. Bull. Chem. Soc. Jpn. 1991, 64, 1268-1273.
Rehman, F. U.; Zhao, C.; Jiang, H.; Wang, X. Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomater. Sci. 2016, 4, 40-54.
Zhang, S. C.; Yang, D. J.; Jing, D. W.; Liu, H. W.; Liu, L.; Jia, Y.; Gao, M. H.; Guo, L. J.; Huo, Z. Y. Enhanced photodynamic therapy of mixed phase TiO2(B)/anatase nanofibers for killing of HeLa cells. Nano Res. 2014, 7, 1659-1669.
Jimenez-Boj, E.; Redlich, K.; Türk, B.; Hanslik-Schnabel, B.; Wanivenhaus, A.; Chott, A.; Smolen, J. S.; Schett, G. Interaction between synovial inflammatory tissue and bone marrow in rheumatoid arthritis. J. Immunol. 2005, 175, 2579-2588.
Sekiya, I.; Larson, B. L.; Smith, J. R.; Pochampally, R.; Cui, J. G.; Prockop, D. J. Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002, 20, 530-541.
De Jong, W. H.; Borm, P. J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008, 3, 133-149.
Ruan, C. H.; Zhang, L. F.; Qin, Y. L.; Xu, C.; Zhang, X. B.; Wan, J. M.; Peng, Z. G.; Shi, J. J.; Li, X. Y.; Wang, L. Synthesis of porphyrin sensitized TiO2/graphene and its photocatalytic property under visible light. Mater. Lett. 2015, 141, 362-365.
Rahimi, R.; Zargari, S.; Yousefi, A.; Berijani, M. Y.; Ghaffarinejad, A.; Morsali, A. Visible light photocatalytic disinfection of E. coli with TiO2-graphene nanocomposite sensitized with tetrakis (4-carboxyphenyl) porphyrin. Appl. Surf. Sci. 2015, 355, 1098-1106.
Zargari, S.; Rahimi, R.; Yousefi, A. An efficient visible light photocatalyst based on tin porphyrin intercalated between TiO2-graphene nanosheets for inactivation of E. coli and investigation of charge transfer mechanism. RSC Adv. 2016, 6, 24218-24228.
Bhaumik, J.; Mittal, A. K.; Banerjee, A.; Chisti, Y.; Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 2015, 8, 1373-1394.
Ikari, K.; Momohara, S. Bone changes in rheumatoid arthritis. N. Engl. J. Med. 2005, 353, e13.
Marmont, A. M.; Van Lint, M. T.; Gualandi, F.; Bacigalupo, A. Autologous marrow stem cell transplantation for severe systemic lupus erythematosus of long duration. LUPUS 1997, 6, 545-548.
Augello, A.; Tasso, R.; Negrini, S. M.; Cancedda, R.; Pennesi, G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007, 56, 1175-1186.
Ezashi, T.; Das, P.; Roberts, R. M. Low O2 tensions and the prevention of differentiation of hES cells. Proc. Natl. Acad. Sci. USA 2005, 102, 4783-4788.
Danet, G. H.; Pan, Y.; Luongo, J. L.; Bonnet, D. A.; Simon, M. C. Expansion of human SCID-repopulating cells under hypoxic conditions. J. Clin. Invest. 2003, 112, 126-135.
Morrison, S. J.; Csete, M.; Groves, A. K.; Melega, W.; Wold, B.; Anderson, D. J. Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J. Neurosci. 2000, 20, 7370-7376.
McInnes, I. B.; Liew, F. Y. Cytokine networks—Towards new therapies for rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2005, 1, 31-39.
Wang, F. F.; Zhai, D.; Wu, C. T.; Chang, J. Multifunctional mesoporous bioactive glass/upconversion nanoparticle nanocomposites with strong red emission to monitor drug delivery and stimulate osteogenic differentiation of stem cells. Nano Res. 2016, 9, 1193-1208.
Turner, L. -A.; Dalby, M. J. Nanotopography—Potential relevance in the stem cell niche. Biomater. Sci. 2014, 2, 1574-1594.
Chang, B.; Song, W.; Han, T. X.; Yan, J.; Li, F. P.; Zhao, L. Z.; Kou, H. C.; Zhang, Y. M. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater. 2016, 33, 311-321.
Brest, P.; Lapaquette, P.; Souidi, M.; Lebrigand, K.; Cesaro, A.; Vouret-Craviari, V.; Mari, B.; Barbry, P.; Mosnier, J. -F.; Hébuterne, X. et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat. Genet. 2011, 43, 242-245.
Li, Y.; Xu, X. J.; Liang, Y.; Liu, S. Y.; Xiao, H. S.; Li, F.; Cheng, H.; Fu, Z. Z. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int. J. Clin. Exp. Pathol. 2010, 3, 254-264.
Poy, M. N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X. S.; MacDonald, P. E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432, 226-230.
Georgantas, R. W.; Hildreth, R.; Morisot, S.; Alder, J.; Liu, C. -G.; Heimfeld, S.; Calin, G. A.; Croce, C. M.; Civin, C. I. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control. Proc. Natl. Acad. Sci. USA 2007, 104, 2750-2755.
Huang, X. A.; Lin, H. The microRNA regulation of stem cells. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 83-95.
Garzon, R.; Croce, C. M. MicroRNAs in normal and malignant hematopoiesis. Curr. Opin. Hematol. 2008, 15, 352-358.
Neilson, J. R.; Zheng, G. X. Y.; Burge, C. B.; Sharp, P. A. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 2007, 21, 578-589.
Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455, 58-63.
Costinean, S.; Zanesi, N.; Pekarsky, Y.; Tili, E.; Volinia, S.; Heerema, N.; Croce, C. M. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl. Acad. Sci. USA 2006, 103, 7024-7029.
Rodriguez, A.; Vigorito, E.; Clare, S.; Warren, M. V.; Couttet, P.; Soond, D. R.; van Dongen, S.; Grocock, R. J.; Das, P. P.; Miska, E. A. Requirement of bic/microRNA-155 for normal immune function. Science 2007, 316, 608-611.
Blüml, S.; Bonelli, M.; Niederreiter, B.; Puchner, A.; Mayr, G.; Hayer, S.; Koenders, M. I.; van den Berg, W. B.; Smolen, J.; Redlich, K. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 2011, 63, 1281-1288.
Zhou, S. Y.; Wang, Y.; Meng, Y.; Xiao, C. Y.; Liu, Z.; Brohawn, P.; Higgs, B. W.; Jallal, B.; Jia, Q.; Qu, B. et al. In vivo therapeutic success of microRNA-155 antagomir in a mouse model of lupus alveolar hemorrhage. Arthritis Rheumatol. 2016, 68, 953-964.
Mizuno, Y.; Yagi, K.; Tokuzawa, Y.; Kanesaki-Yatsuka, Y.; Suda, T.; Katagiri, T.; Fukuda, T.; Maruyama, M.; Okuda, A.; Amemiya, T. et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem. Biophys. Res. Commun. 2008, 368, 267-272.
Itoh, T.; Nozawa, Y.; Akao, Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J. Biol. Chem. 2009, 284, 19272-19279.
Anderson, C.; Catoe, H.; Werner, R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res. 2006, 34, 5863-5871.
Caretti, G.; Di Padova, M.; Micales, B.; Lyons, G. E.; Sartorelli, V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 2004, 18, 2627-2638.
Li, Y. -T.; Chen, S. -Y.; Wang, C. -R.; Liu, M. -F.; Lin, C. -C.; Jou, I. M.; Shiau, A. -L.; Wu, C. -L. Brief Report: Amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum. 2012, 64, 3240-3245.
Parasuraman, S.; Raveendran, R.; Kesavan, R. Blood sample collection in small laboratory animals. J. Pharmacol. Pharmacother. 2010, 1, 87-93.