AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Uniformly grown PtCo-modified Co3O4 nanosheets as a highly efficient catalyst for sodium borohydride electrooxidation

Congying Song1Dongming Zhang2( )Bin Wang1Zhuang Cai1Peng Yan1Yang Sun1Ke Ye1Dianxue Cao1Kui Cheng1Guiling Wang1( )
College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001China
Research Center of Shanxi Province for High Gravity Chemical Engineering and TechnologyNorth University of ChinaTaiyuan030051China
Show Author Information

Graphical Abstract

Abstract

A facile hydrothermal synthetic method, followed by in situ reduction and galvanic replacement processes, is used to prepare PtCo-modified Co3O4 nanosheets (PtCo/Co3O4 NSs) supported on Ni foam. The prepared nanomaterial is used as an electrocatalyst for NaBH4 oxidation in alkaline solution. The morphology and phase composition of PtCo/Co3O4 NSs are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalytic performance of PtCo/Co3O4 NSs is investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in a standard three-electrode system. Current densities of 70 and 850 mA·cm–2 were obtained at–0.4 V for Co/Co3O4 and PtCo/Co3O4 NSs, respectively, in a solution containing 2 mol·L–1 NaOH and 0.2 mol·L–1 NaBH4. The use of a noble metal (Pt) greatly enhances the catalytic activity of the transition metal (Co) and Co3O4. Besides, both Co and Co3O4 exhibit good B–H bond breaking ability (in NaBH4), which leads to better electrocatalytic activity and stability of PtCo/Co3O4 NSs in NaBH4 electrooxidation compared to pure Pt. The results demonstrate that the as-prepared PtCo/Co3O4 NSs can be a promising electrocatalyst for borohydride oxidation.

References

1

Hosseini, M. G.; Abdolmaleki, M.; Nasirpouri, F. Investigation of the porous nanostructured Cu/Ni/AuNi electrode for sodium borohydride electrooxidation. Electrochim. Acta 2013, 114, 215-222.

2

Chan, B. C.; Liu, R. X.; Jambunathan, K.; Zhang, H.; Chen, G. Y.; Mallouk, T. E.; Smotkin, E. S. Comparison of high-throughput electrochemical methods for testing direct methanol fuel cell anode electrocatalysts. J. Electrochem. Soc. 2005, 152, A594-A600.

3

Kho, B. K.; Bae, B.; Scibioh, M. A.; Lee, J.; Ha, H. Y. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells. J. Power Sources 2005, 142, 50-55.

4

Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015, 8, 2308-2316.

5

Zhao, L.; Wang, Z. B.; Liu, J.; Zhang, J. J.; Sui, X. L.; Zhang, L. M.; Gu, D. M. Facile one-pot synthesis of Pt/graphene-TiO2 hybrid catalyst with enhanced methanol electrooxidation performance. J. Power Sources 2015, 279, 210-217.

6

Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755-765.

7

Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140-155.

8

Yang, J.; Xie, Y.; Wang, R. H.; Jiang, B. J.; Tian, C. G.; Mu, G.; Yin, J.; Wang, B.; Fu, H. G. Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation. ACS Appl. Mater. Interfaces 2013, 5, 6571-6579.

9

Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406-415.

10

Karaliberoglu, S. U.; Pelit, L.; Gelmez, B.; Dursun, Z. Electrocatalytic oxidation of sodium borohydride on metal ad-atom modified Au(111) single crystal electrodes in alkaline solution. Int. J. Hydrogen Energy 2011, 36, 12678-12685.

11

Coutanceau, C.; Koffi, R. K.; Léger, J. M.; Marestin, K.; Mercier, R.; Nayoze, C.; Capron, P. Development of materials for mini DMFC working at room temperature for portable applications. J. Power Sources 2006, 160, 334-339.

12

Peled, E.; Livshits, V.; Duvdevani, T. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM). J. Power Sources 2002, 106, 245-248.

13

Wang, W.; Gu, L.; Qian, H. L.; Zhao, M.; Ding, X.; Peng, X. S.; Sha, J.; Wang, Y. W. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries. J. Power Sources 2016, 307, 410-415.

14

Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P. MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries. J. Power Sources 2016, 306, 724-732.

15

Zhang, W.; Yan, X. Y.; Tong, X. L.; Yang, J.; Miao, L.; Sun, Y. Y.; Peng, L. Y. Self-supported hierarchical hollow-branch cobalt oxide nanorod arrays as binder-free electrodes for high-performance lithium ion batteries. Mater. Lett. 2016, 162, 101-104.

16

Krishnamoorthy, K.; Veerasubramani, G. K.; Pazhamalai, P.; Kim, S. J. Designing two dimensional nanoarchitectured MoS2 sheets grown on Mo foil as a binder free electrode for supercapacitors. Electrochim. Acta 2016, 190, 305-312.

17

Zheng, Y. C.; Li, Z. Q.; Xu, J.; Wang, T. L.; Liu, X.; Duan, X. H.; Ma, Y. J.; Zhou, Y.; Pei, C. H. Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy 2016, 20, 94-107.

18

Perera, S. D.; Rudolph, M.; Mariano, R. G.; Nijem, N.; Ferraris, J. P.; Chabal, Y. J.; Balkus, K. J., Jr. Manganese oxide nanorod-graphene/vanadium oxide nanowire-graphene binder-free paper electrodes for metal oxide hybrid supercapacitors. Nano Energy 2013, 2, 966-975.

19

Zheng, S. Q.; Yang, F. F.; Chen, S. L.; Liu, L.; Xiong, Q.; Yu, T.; Zhao, F.; Schröder, U.; Hou, H. Q. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources 2015, 284, 252-257.

20

Chen, S. L.; Chen, Y.; He, G. H.; He, S. J.; Schroder, U.; Hou, H. Q. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosens. Bioelectron. 2012, 34, 282-285.

21

Zhu, Q. C.; Hu, H.; Li, G. J.; Zhu, C. B.; Yu, Y. TiO2 nanotube arrays grafted with MnO2 nanosheets as high-performance anode for lithium ion battery. Electrochim. Acta 2015, 156, 252-260.

22

Chen, Q.; Heng, B. J.; Wang, H.; Sun, D. M.; Wang, B. X.; Sun, M.; Guan, S. L.; Fu, R. Y.; Tang, Y. W. Controlled facile synthesis of hierarchical CuO@MnO2 core-shell nanosheet arrays for high-performance lithium-ion battery. J. Alloy. Compd. 2015, 641, 80-86.

23

Santos, D. M. F.; Sequeira, C. A. C. Sodium borohydride as a fuel for the future. Renew. Sustain. Energy Rev. 2011, 15, 3980-4001.

24

Yang, Z. Z.; Wang, L. B.; Gao, Y. F.; Mao, X. B.; Ma, C. A. LaNi4.5Al0.5 alloy doped with Au used as anodic materials in a borohydride fuel cell. J. Power Sources 2008, 184, 260-264.

25

Merino-Jimenez, I.; Janik, M. J.; Ponce de Leon, C.; Walsh, F. C. Pd-Ir alloy as an anode material for borohydride oxidation. J. Power Sources 2014, 269, 498-508.

26

Zhang, X. L.; Wei, C. H.; Song, Y. Y.; Song, X. P.; Sun, Z. B. Nanoporous Ag-ZrO2 composites prepared by chemical dealloying for borohydride electro-oxidation. Int. J. Hydrogen Energy 2014, 39, 15646-15655.

27

Sanli, E.; Uysal, B. Z.; Aksu, M. L. The oxidation of NaBH4 on electrochemicaly treated silver electrodes. Int. J. Hydrogen Energy 2008, 33, 2097-2104.

28

Ma, J.; Sahai, Y.; Buchheit, R. G. Direct borohydride fuel cell using Ni-based composite anodes. J. Power Sources 2010, 195, 4709-4713.

29

Wang, B.; Zhang, D. M.; Ye, K.; Cheng, K.; Cao, D. X.; Wang, G. L.; Cheng, X. L. Plastic supported platinum modified nickel electrode and its high electrocatalytic activity for sodium borohydride electrooxidation. J. Energ. Chem. 2015, 24, 497-502.

30

Santos, D. M. F.; Sequeira, C. A. C. Zinc anode for direct borohydride fuel cells. J. Electrochem. Soc. 2010, 157, B13-B19.

31

Saha, S.; Ganguly, S.; Banerjee, D.; Kargupta, K. Novel bimetallic graphene-cobalt-nickel (G-Co-Ni) nano-ensemble electrocatalyst for enhanced borohydride oxidation. Int. J. Hydrogen Energy 2015, 40, 1760-1773.

32

Zhang, D. M.; Ye, K.; Cheng, K.; Cao, D. X.; Yin, J. L.; Xu, Y.; Wang, G. L. High electrocatalytic activity of cobalt-multiwalled carbon nanotubes-cosmetic cotton nanostructures for sodium borohydride electrooxidation. Int. J. Hydrogen Energy 2014, 39, 9651-9657.

33

Yao, J.; Yao, Y. F. Experimental study of characteristics of bimetallic Pt-Fe nano-particle fuel cell electrocatalyst. Renew. Energ. 2015, 81, 182-196.

34

Wang, L. B.; Ma, C.; Mao, X. B.; Sun, Y. M.; Suda, S. AB5-type hydrogen storage alloy modified with Ti/Zr used as anodic materials in borohydride fuel cell. J. Mater. Sci. Technol. 2005, 21, 831-835.

35

Zhang, D. M.; Wang, G. L.; Cheng, K.; Huang, J. C.; Yan, P.; Cao, D. X. Enhancement of electrocatalytic performance of hydrogen storage alloys by multi-walled carbon nanotubes for sodium borohydride oxidation. J. Power Sources 2014, 245, 482-486.

36

Liu, B. H.; Suda, S. Hydrogen storage alloys as the anode materials of the direct borohydride fuel cell. J. Alloy. Compd. 2008, 454, 280-285.

37

Liu, B. H.; Li, Z. P.; Suda, S. Anodic oxidation of alkali borohydrides catalyzed by nickel. J. Electrochem. Soc. 2003, 150, A398-A402.

38

Liu, B. H.; Li, Z. P.; Suda, S. Electrocatalysts for the anodic oxidation of borohydrides. Electrochim. Acta 2004, 49, 3097-3105.

39

Rostamikia, G.; Janik, M. J. Direct borohydride oxidation: Mechanism determination and design of alloy catalysts guided by density functional theory. Energy Environ. Sci. 2010, 3, 1262-1274.

40

Zhang, D. M.; Ye, K.; Cao, D. X.; Wang, B.; Cheng, K.; Li, Y. J.; Wang, G. L.; Xu, Y. Co@MWNTs-plastic: A novel electrode for NaBH4 oxidation. Electrochim. Acta 2015, 156, 102-107.

41

Molina Concha, B.; Chatenet, M. Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media: Part Ⅱ. Carbon-supported nanoparticles. Electrochim. Acta 2009, 54, 6130-6139.

42

Huang, J. C.; Zhu, J. T.; Cheng, K.; Xu, Y.; Cao, D. X.; Wang, G. L. Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochimi. Acta 2012, 75, 273-278.

43

Mahmoudian, M. R.; Basirun, W. J.; Woi, P. M.; Sookhakian, M.; Yousefi, R.; Ghadim, H.; Alias, Y. Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection. Mater. Sci. Eng. C 2016, 59, 500-508.

44

Xu, S.; Wang, Z. L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013-1098.

45

Li, D. B.; Li, M.; Pan, J.; Luo, Y. Y.; Wu, H.; Zhang, Y. X.; Li, G. H. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance. ACS Appl. Mater. Interfaces 2014, 6, 6555-6561.

46

Lian, C.; Xiao, X. L.; Chen, Z.; Liu, Y. X.; Zhao, E. Y.; Wang, D. S.; Chen, C. Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 2016, 9, 435-441.

47

Tholkappiyan, R.; Vishista, K. Tuning the composition and magnetostructure of dysprosium iron garnets by Co-substitution: An XRD, FT-IR, XPS and VSM Study. Appl. Surf. Sci. 2015, 351, 1016-1024.

48

Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015-6021.

49

Bonnelle, J. P.; Grimblot, J.; D'huysser, A. Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt. J. Electron. Spectrosc. Relat. Phenom. 1975, 7, 151-162.

50

McIntyre, N. S.; Johnston, D. D.; Coatsworth, L. L.; Davidson, R. D.; Brown, J. R. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum. Surf. Interface Anal. 1990, 15, 265-272.

51

Anton, J.; Nebel, J.; Song, H. Q.; Froese, C.; Weide, P.; Ruland, H.; Muhler, M.; Kaluza, S. Structure-activity relationships of Co-modified Cu/ZnO/Al2O3 catalysts applied in the synthesis of higher alcohols from synthesis gas. Appl. Catal. A-Gen. 2015, 505, 326-333.

52

Zhai, C. Y.; Zhu, M. S.; Pang, F. Z.; Bin, D.; Lu, C.; Cynthia Goh, M.; Yang, P.; Du, Y. K. High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl. Mater. Interfaces 2016, 8, 5972-5980.

53

Wei, J. L.; Wang, X. Y.; Wang, Y.; Chen, Q. Q.; Pei, F.; Wang, Y. S. Investigation of carbon-supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride. Int. J. Hydrogen Energy 2009, 34, 3360-3366.

54

Tegou, A.; Armyanovm, S.; Valova, E.; Steenhaut, O.; Hubin, A.; Kokkinidis, G.; Sotiropoulos, S. Mixed platinum-gold electrocatalysts for borohydride oxidation prepared by the galvanic replacement of nickel deposits. J. Electroanal. Chem. 2009, 634, 104-110.

55

Cheng, K.; Cao, D. X.; Yang, F.; Zhang, D. M.; Yan, P.; Yin, J. L.; Wang, G. L. Pd doped three-dimensional porous Ni film supported on Ni foam and its high performance toward NaBH4 electrooxidation. J. Power Sources 2013, 242, 141-147.

56

Simões, M.; Baranton, S.; Coutanceau, C. Electrooxidation of sodium borohydride at Pd, Au, and PdxAu1-x carbon-supported nanocatalysts. J. Phys. Chem. C 2009, 113, 13369-13376.

57

Yi, L. H.; Liu, L.; Liu, X.; Wang, X. Y.; Yi, W.; He, P. Y.; Wang, X. Y. Carbon-supported Pt-Co nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance. Int. J. Hydrogen Energy 2012, 37, 12650-12658.

58

Pei, F.; Wang, Y.; Wang, X. Y.; He, P. Y.; Chen, Q. Q.; Wang, X. Y.; Wang, H.; Yi, L. H.; Guo, J. Performance of supported Au-Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell. Int. J. Hydrogen Energy 2010, 35, 8136-8142.

59

Wei, J. L.; Wang, X. Y.; Wang, Y.; Guo, J.; He, P. Y.; Yang, S. Y.; Li, N.; Pei, F.; Wang, Y. S. Carbon-supported Au hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells. Energy Fuels 2009, 23, 4037-4041.

60

Wang, G. L.; Zhang, W. C.; Cao, D. X.; Liu, J. C.; Wang, X. Y.; Wang, S.; Sun, K. N. Fe2O3-modified hydrogen storage alloys as electrocatalyst for borohydride oxidation. Chinese J. Chem. 2009, 27, 2166-2170.

61

Yan, P.; Zhang, D. M.; Cheng, K.; Wang, Y. J.; Ye, K.; Cao, D. X.; Wang, B.; Wang, G. L.; Li, Q. Preparation of Au nanoparticles modified TiO2/C core/shell nanowire array and its catalytic performance for NaBH4 oxidation. J. Electroanal. Chem. 2015, 745, 56-60.

62

Wang, G. J.; Gao, Y. Z.; Wang, Z. B.; Du, C. Y.; Wang, J. J.; Yin, G. P. Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell. J. Power Sources 2010, 195, 185-189.

Nano Research
Pages 3322-3333
Cite this article:
Song C, Zhang D, Wang B, et al. Uniformly grown PtCo-modified Co3O4 nanosheets as a highly efficient catalyst for sodium borohydride electrooxidation. Nano Research, 2016, 9(11): 3322-3333. https://doi.org/10.1007/s12274-016-1209-4

667

Views

55

Crossref

N/A

Web of Science

57

Scopus

2

CSCD

Altmetrics

Received: 26 April 2016
Revised: 17 June 2016
Accepted: 09 July 2016
Published: 12 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return