Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Molecularly imprinted polymers (MIP) are receiving increasing attention thanks to their robustness, stability, and inexpensive manufacture compared with their bio-analogues such as antibodies. The molecular imprinting process can be defined as the generation of molecular recognition sites in a synthetic polymer. The template-derived sites created within a polymeric matrix allow MIPs (often referred as plastic antibodies) to selectively recognize and bind to the target molecule. Therefore, MIPs can be used in sensors and in separation and diagnostics. Owing to their size and functional properties, MIP nanoparticles (NPs) can potentially be used in biomedicine, but comprehensive analysis of their interaction with cells and in vitro toxicological tests must be performed first. Herein, we report the synthesis of bare and core–shell imprinted NPs using an innovative solid-phase approach and the toxicological evaluation of such NPs in different cell lines (HaCaT, MEFs, HT1080, and macrophages). We also evaluated the influence of the protein corona on particle stability, the internalization of NPs in cells, and the influence of various surface coatings. Studies on the metabolic effects of imprinted NPs on fibroblasts showed that bare MIPs do not alter cell metabolism, whereas some issues arise when specific particle coatings are used. Furthermore, in vitro cytokine release studies revealed that macrophages were not activated in the presence of the MIPs evaluated in this study. The results suggest that MIP NPs are biocompatible, paving the way for their in vivo application.
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012, 14, 282–295.
Galindo-Rodríguez, S. A.; Puel, F.; Briançon, S.; Allémann, E.; Doelker, E.; Fessi, H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur. J. Pharm. Sci. 2005, 25, 357–367.
Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. A. Polymeric nanoparticles for optical sensing. Biotechnol. Adv. 2013, 31, 1585–1599.
Ton, X. A.; Acha, V.; Haupt, K.; Tse Sum Bui, B. Direct fluorimetric sensing of UV-excited analytes in biological and environmental samples using molecularly imprinted polymer nanoparticles and fluorescence polarization. Biosens. Bioelectron. 2012, 36, 22–28.
Basozabal, I.; Guerreiro, A.; Gomez-Caballero, A.; Aranzazu Goicolea, M.; Barrio, R. J. Direct potentiometric quantification of histamine using solid-phase imprinted nanoparticles as recognition elements. Biosens. Bioelectron. 2014, 58, 138–144.
Chianella, I.; Guerreiro, A.; Moczko, E.; Caygill, J. S.; Piletska, E. V.; De Vargas Sansalvador, I. M. P.; Whitcombe, M. J.; Piletsky, S. A. Direct replacement of antibodies with molecularly imprinted polymer nanoparticles in ELISA—Development of a novel assay for vancomycin. Anal. Chem. 2013, 85, 8462–8468.
Korposh, S.; Chianella, I.; Guerreiro, A.; Caygill, S.; Piletsky, S.; James, S. W.; Tatam, R. P. Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 2014, 139, 2229–2236.
Liu, Y. B.; Wang, S. S.; Zhang, C.; Su, X.; Huang, S.; Zhao, M. P. Enhancing the selectivity of enzyme detection by using tailor-made nanoparticles. Anal. Chem. 2013, 85, 4853–4857.
Shutov, R. V.; Guerreiro, A.; Moczko, E.; De Vargas- Sansalvador, I. P.; Chianella, I.; Whitcombe, M. J.; Piletsky, S. A. Introducing MINA—The molecularly imprinted nanoparticle assay. Small 2014, 10, 1086–1089.
Hoshino, Y.; Koide, H.; Urakami, T.; Kanazawa, H.; Kodama, T.; Oku, N.; Shea, K. J. Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: A plastic antibody. J. Am. Chem. Soc. 2010, 132, 6644–6645.
Poma, A.; Guerreiro, A.; Whitcombe, M. J.; Piletska, E. V.; Turner, A. P. F.; Piletsky, S. A. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template–"Plastic Antibodies". Adv. Funct. Mater. 2013, 23, 2821–2827.
Moczko, E.; Poma, A.; Guerreiro, A.; Perez De Vargas Sansalvador, I.; Caygill, S.; Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. Surface-modified multifunctional MIP nanoparticles. Nanoscale 2013, 5, 3733–3741.
Moczko, E.; Guerreiro, A.; Piletska, E.; Piletsky, S. PEGstabilized core-shell surface-imprinted nanoparticles. Langmuir 2013, 29, 9891–9896.
Rabanel, J. M.; Hildgen, P.; Banquy, X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J. Control. Release 2014, 185, 71–87.
Lai, J. C. K.; Ananthakrishnan, G.; Jandhyam, S.; Dukhande, V. V.; Bhushan, A.; Gokhale, M.; Daniels, C. K.; Leung, S. W. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int. J. Nanomedicine 2010, 5, 715–723.
Aragonés, J.; Fraisl, P.; Baes, M.; Carmeliet, P. Oxygen sensors at the crossroad of metabolism. Cell Metab. 2009, 9, 11–22.
von Kleist-Retzow, J. C.; Hornig-Do, H. T.; Schauen, M.; Eckertz, S.; Dinh, T. A. D.; Stassen, F.; Lottmann, N.; Bust, M.; Galunska, B.; Wielckens, K. et al. Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels. Exp. Cell Res. 2007, 313, 3076–3089.
Hynes, J.; Floyd, S.; Soini, A. E.; O'Connor, R.; Papkovsky, D. B. Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J. Biomol. Screen. 2003, 8, 264–272.
Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solidphase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455.
Sheng, H.; Ye, B. C. Different strategies of covalent attachment of oligonucleotide probe onto glass beads and the hybridization properties. Appl. Biochem. Biotechnol. 2009, 152, 54–65.
Guerreiro, A. R.; Chianella, I.; Piletska, E.; Whitcombe, M. J.; Piletsky, S. A. Selection of imprinted nanoparticles by affinity chromatography. Biosens. Bioelectron. 2009, 24, 2740–2743.
Zhdanov, A. V.; Favre, C.; O'Flaherty, L.; Adam, J.; O'Connor, R.; Pollard, P. J.; Papkovsky, D. B. Comparative bioenergetic assessment of transformed cells using a cell energy budget platform. Integr. Biol. 2011, 3, 1135–1142.
Zhdanov, A. V.; Ogurtsov, V. I.; Taylor, C. T.; Papkovsky, D. B. Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integr. Biol. 2010, 2, 443–451.
Poma, A.; Guerreiro, A.; Caygill, S.; Moczko, E.; Piletsky, S. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water. RSC Adv. 2014, 4, 4203–4206.
Ambrosini, S.; Beyazit, S.; Haupt, K.; Tse Sum Bui, B. Solid-phase synthesis of molecularly imprinted nanoparticles for protein recognition. Chem. Commun. 2013, 49, 6746–6748.
Otsu, T. Iniferter concept and living radical polymerization. J. Polym. Sci. A: Polym. Chem. 2000, 38, 2121–2136.
Mun, E. A.; Hannell, C.; Rogers, S. E.; Hole, P.; Williams, A. C.; Khutoryanskiy, V. V. On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions. Langmuir 2014, 30, 308–317.
Carnell, P.; Newell, S. Characterizing nanoparticles in liquids: Protein aggregation studies. Am. Lab. 2013, 45, 48–51.
Anderson, W.; Kozak, D.; Coleman, V. A.; Jämting, Å. K.; Trau, M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 2013, 405, 322–330.
Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437.
Cui, M. H.; Liu, R. X.; Deng, Z. Y.; Ge, G. L.; Liu, Y.; Xie, L. M. Quantitative study of protein coronas on gold nanoparticles with different surface modifications. Nano Res. 2014, 7, 345–352.
Walkey, C. D.; Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799.
Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 2005, 1, 48–63.
Natte, K.; Friedrich, J. F.; Wohlrab, S.; Lutzki, J.; von Klitzing, R.; Österle, W.; Orts-Gil, G. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona. Colloids Surf. B: Biointerfaces 2013, 104, 213–220.
Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.
Göppert, T. M.; Müller, R. H. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm. 2005, 302, 172–186.
Vroman, L.; Adams, A. L.; Fischer, G. C.; Munoz, P. C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980, 55, 156–159.
Dmitriev, R. I.; Zhdanov, A. V.; Jasionek, G.; Papkovsky, D. B. Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes. Anal. Chem. 2012, 84, 2930–2938.
Bernier, M.; Paul, R. K.; Martin-Montalvo, A.; Scheibye-Knudsen, M.; Song, S. M.; He, H. J.; Armour, S. M.; Hubbard, B. P.; Bohr, V. A.; Wang, L. L. et al. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J. Biol. Chem. 2011, 286, 19270–19279.
Fercher, A.; Borisov, S. M.; Zhdanov, A. V.; Klimant, I.; Papkovsky, D. B. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 2011, 5, 5499–5508.
Murray, P. J.; Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737.
Sindrilaru, A.; Peters, T.; Wieschalka, S.; Baican, C.; Baican, A.; Peter, H.; Hainzl, A.; Schatz, S.; Qi, Y.; Schlecht, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 2011, 121, 985–997.
Finco, D.; Grimaldi, C.; Fort, M.; Walker, M.; Kiessling, A.; Wolf, B.; Salcedo, T.; Faggioni, R.; Schneider, A.; Ibraghimov, A. et al. Cytokine release assays: Current practices and future directions. Cytokine 2014, 66, 143–155.
Vidal, J. M.; Kawabata, T. T.; Thorpe, R.; Silva-Lima, B.; Cederbrant, K.; Poole, S.; Mueller-Berghaus, J.; Pallardy, M.; Van der Laan, J. W. In vitro cytokine release assays for predicting cytokine release syndrome: The current stateof- the-science. Report of a European Medicines Agency Workshop. Cytokine 2010, 51, 213–215.