AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene

Xin Lu1,§Xin Luo2,3,§Jun Zhang4Su Ying Quek2,3( )Qihua Xiong1,5( )
Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological UniversitySingapore637371Singapore
Department of PhysicsNational University of Singapore2 Science Drive 3Singapore117551Singapore
Centre for Advanced 2D MaterialsNational University of Singapore6 Science Drive 2Singapore117546Singapore
State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
NOVITASNanoelectronics Centre of ExcellenceSchool of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

We review lattice vibrational modes in atomically thin two-dimensional (2D) layered materials, focusing on 2D materials beyond graphene, such as group Ⅵ transition metal dichalcogenides, topological insulator bismuth chalcogenides, and black phosphorus. Although the composition and structure of those materials are remarkably different, they share a common and important feature, i.e., their bulk crystals are stacked via van der Waals interactions between "layers" while each layer is comprised of one or more atomic planes. First, we review the background of some 2D materials (MX2, M = Mo, W; X = S, Se, Te. Bi2X3, X = Se, Te. Black phosphorus), including crystalline structures and stacking order. We then review the studies on vibrational modes of layered materials and nanostructures probed by the powerful yet nondestructive Raman spectroscopy technique. Based on studies conducted before 2010, recent investigations using more advanced techniques have pushed the studies of phonon modes in 2D layered materials to the atomically thin regime, down to monolayers. We will classify the recently reported general features into the following categories: phonon confinement effects and electron-phonon coupling, anomalous shifts in high-frequency intralayer vibrational modes and surface effects, reduced dimensionality and lower symmetry, the linear chain model and the substrate effect, stacking orders and interlayer shear modes, polarization dependence, and the resonance effect. Within the seven categories, both intralayer and interlayer vibrational modes will be discussed. The comparison between different materials will be provided as well.

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

2

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

3

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Z. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

4

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.

5

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.

6

Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523-4530.

7

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.

8

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584-588.

9

Huang, X.; Zhang, H. Molecular crystals on two-dimensional van der Waals substrates. Sci. China Mater. 2015, 58, 5-8.

10

Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum hall effect in graphene. Science 2007, 315, 1379-1379.

11

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.

12

Qi, X. -L.; Zhang, S. -C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057-1110.

13

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. -Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

14

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

15

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447-3454.

16

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

17

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.

18

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517-521.

19

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

20

Ando, T.; Fowler, A. B.; Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982, 54, 437-672.

21

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

22

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.

23

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.

24

Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

25

Zhang, X.; Qiao, X. -F.; Shi, W.; Wu, J. -B.; Jiang, D. -S.; Tan, P. -H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757-2785.

26

Molina-Sánchez, A.; Hummer, K.; Wirtz, L. Vibrational and optical properties of MoS2: From monolayer to bulk. Surf. Sci. Rep. 2015, 70, 554-586.

27

Ji, J. T.; Dong, S.; Zhang, A. M.; Zhang, Q. M. Low- frequency interlayer vibration modes in two-dimensional layered materials. Phys. E 2016, 80, 130-141.

28

Zhang, X.; Tan, Q. -H.; Wu, J. -B.; Shi, W.; Tan, P. -H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435-6450.

29

Luo, X.; Lu, X.; Koon, G. K. W.; Neto, A. H. C.; Özyilmaz, B.; Xiong, Q. H.; Quek, S. Y. Large frequency change with thickness in interlayer breathing mode-significant interlayer interactions in few layer black phosphorus. Nano Lett. 2015, 15, 3931-3938.

30

Zhang, H. J.; Liu, C. -X.; Qi, X. -L.; Dai, X.; Fang, Z.; Zhang, S. -C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.

31

Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178-181.

32

Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. -H.; Sung, H. -J.; Kan, M.; Kang, H.; Hwang, J. -Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482-486.

33

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344-1347.

34

Eda, G.; Yamaguchi, H.; Voiry, F.; Fujita, T.; Chen, M. W.; Chowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

35

Gupta, U.; Naidu, B. S.; Maitra, U.; Singh, A.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R. Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction. APL Mater. 2014, 2, 092802.

36

Shirodkar, S. N.; Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 2014, 112, 157601.

37

Amara, K. K.; Chen, Y. F.; Lin, Y. -C.; Kumar, R.; Okunishi, E.; Suenaga, K.; Quek, S. Y.; Eda, G. Dynamic structural evolution of metal-metal bonding network in monolayer WS2. Chem. Mater. 2016, 28, 2308-2314.

38

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193-335.

39

Suzuki, R.; Sakano, M.; Zhang, Y. J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 2014, 9, 611-617.

40

Raman, C. V.; Krishnan, K. S. A new type of secondary radiation. Nature 1928, 121, 501-502.

41

Raman, C. V. A change of wave-length in light scattering. Nature 1928, 121, 619.

42

Cardona, M. Light Scattering in Solids I; Springer-Verlag: Berlin, 1983.

43

Ferrari, A. C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. R. Soc. A 2004, 362, 2477-2512.

44

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57.

45

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.

46

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51-87.

47

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273-291.

48

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

49

Dresselhaus, M. S.; Eklund, P. C. Phonons in carbon nanotubes. Adv. Phys. 2000, 49, 705-814.

50

Eklund, P. C.; Holden, J. M.; Jishi, R. A. Vibrational-modes of carbon nanotubes; Spectroscopy and theory. Carbon 1995, 33, 959-972.

51

Chen, G.; Wu, J.; Lu, Q. J.; Gutierrez, H. R.; Xiong, Q. H.; Pellen, M. E.; Petko, J. S.; Werner, D. H.; Eklund, P. C. Optical antenna effect in semiconducting nanowires. Nano Lett. 2008, 8, 1341-1346.

52

Jorio, A.; Souza Filho, A. G.; Brar, V. W.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Righi, A.; Hafner, J. H.; Lieber, C. M.; Saito, R. et al. Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects. Phys. Rev. B 2002, 65, 121402.

53

Wang, R. P.; Xu, G.; Jin, P. Size dependence of electron- phonon coupling in ZnO nanowires. Phys. Rev. B 2004, 69, 113303.

54

Zhang, Q.; Zhang, J.; Utama, M. I. B.; Peng, B.; de la Mata, M.; Arbiol, J.; Xiong, Q. H. Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys. Rev. B 2012, 85, 085418.

55

Chen, Y. Q.; Peng, B.; Wang, B. Raman spectra and temperature-dependent Raman scattering of silicon nanowires. J. Phys. Chem. C 2007, 111, 5855-5858.

56

Zhang, Q.; Liu, X. F.; Utama, M. I. B.; Zhang, J.; de la Mata, M.; Arbiol, J.; Lu, Y. H.; Sum, T. C.; Xiong, Q. H. Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt. Nano Lett. 2012, 12, 6420-6427.

57

Adu, K. W.; Gutiérrez, H. R.; Kim, U. J.; Eklund, P. C. Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study. Phys. Rev. B 2006, 73, 155333.

58

Adu, K. W.; Xiong, Q.; Gutierrez, H. R.; Chen, G.; Eklund, P. C. Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A 2006, 85, 287-297.

59

Wang, R. P.; Zhou, G. W.; Liu, Y. L.; Pan, S. H.; Zhang, H. Z.; Yu, D. P.; Zhang, Z. Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Phys. Rev. B 2000, 61, 16827-16832.

60

Piscanec, S.; Cantoro, M.; Ferrari, A. C.; Zapien, J. A.; Lifshitz, Y.; Lee, S. T.; Hofmann, S.; Robertson, J. Raman spectroscopy of silicon nanowires. Phys. Rev. B 2003, 68, 241312.

61

Gupta, R.; Xiong, Q.; Adu, C. K.; Kim, U. J.; Eklund, P. C. Laser-induced Fano resonance scattering in silicon nanowires. Nano Lett. 2003, 3, 627-631.

62

Xiong, Q. H.; Wang, J. G.; Reese, O.; Lew Yan Voon, L. C.; Eklund, P. C. Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett. 2004, 4, 1991-1996.

63

Gupta, R.; Xiong, Q. H.; Mahan, G. D.; Eklund, P. C. Surface optical phonons in gallium phosphide nanowires. Nano Lett. 2003, 3, 1745-1750.

64

Ferraro, J. R.; Nakamoto, K.; Brown, C. W. Introductory Raman Spectroscopy, 2nd ed.; Elsevier: Amsterdam, 2003.

65

Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach; Wiley: Chichester, 2005.

66

Loudon, R. The Raman effect in crystals. Adv. Phys. 2001, 50, 813-864.

67

Wieting, T. J. Long-wavelength lattice vibrations of MoS2 and GaSe. Solid State Commun. 1973, 12, 931-935.

68

Nemanich, R. J.; Lucovsky, G.; Solin, S. A. Long Wavelength Lattice Vibrations of Graphite. In Proceedings of the International Conference on Lattice Dynamics, Paris, France, 1977, pp 619-621.

69

Yu, P.; Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed.; Springer-Verlag: Berlin, 2010.

70

Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515-562.

71

Brüesch, P. Phonons: Theory and Experiments Ⅱ: Experiments and Interpretation of Experimental Results; Springer-Verlag: Berlin, 1986.

72

Cardona, M.; Güntherodt, G. Light Scattering in Solids Ⅱ; Springer-Verlag: Berlin, 1982.

73

Luo, X.; Zhao, Y. Y.; Zhang, J.; Xiong, Q. H.; Quek, S. Y. Anomalous frequency trends in MoS2 thin films attributed to surface effects. Phys. Rev. B 2013, 88, 075320.

74

Umari, P.; Pasquarello, A.; Dal Corso, A. Raman scattering intensities in α-quartz: A first-principles investigation. Phys. Rev. B 2001, 63, 094305.

75

Wu, J. -B.; Zhang, X.; Ijäs, M.; Han, W. -P.; Qiao, X. -F.; Li, X. -L.; Jiang, D. -S.; Ferrari, A. C.; Tan, P. -H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.

76

Coh, S.; Tan, L. Z.; Louie, S. G.; Cohen, M. L. Theory of the Raman spectrum of rotated double-layer graphene. Phys. Rev. B 2013, 88, 165431.

77

Allard, A.; Wirtz, L. Graphene on metallic substrates: Suppression of the kohn anomalies in the phonon dispersion. Nano Lett. 2010, 10, 4335-4340.

78

Kern, G.; Kresse, G.; Hafner, J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B 1999, 59, 8551-8559.

79

Serrano, J.; Bosak, A.; Arenal, R.; Krisch, M.; Watanabe, K.; Taniguchi, T.; Kanda, H.; Rubio, A.; Wirtz, L. Vibrational properties of hexagonal boron nitride: Inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 2007, 98, 095503.

80

Wirtz, L.; Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 2004, 131, 141-152.

81

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

82

Cooper, V. R. Van der Waals density functional: An appropriate exchange functional. Phys. Rev. B 2010, 81, 161104(R).

83

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

84

Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007-1015.

85

Luo, X.; Sullivan, M. B.; Quek, S. Y. First-principles investigations of the atomic, electronic, and thermoelectric properties of equilibrium and strained Bi2Se3 and Bi2Te3 including van der Waals interactions. Phys. Rev. B 2012, 86, 184111.

86

Verble, J. L.; Wieting, T. J. Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 1970, 25, 362-365.

87

Wieting, T. J.; Verble, J. L. Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 1971, 3, 4286-4292.

88

Ghosh, P. N.; Maiti, C. R. Interlayer force and Davydov splitting in 2H-MoS2. Phys. Rev. B 1983, 28, 2237-2239.

89

Böker, T.; Severin, R.; Müller, A.; Janowitz, C.; Manzke, R.; Voβ, D.; Krüger, P.; Mazur, A.; Pollmann, J. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 2001, 64, 235305.

90

Sugai, S.; Ueda, T. High-pressure Raman-spectroscopy in the layered materials 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. Phys. Rev. B 1982, 26, 6554-6558.

91

Sekine, T.; Nakashizu, T.; Toyoda, K.; Uchinokura, K.; Matsuura, E. Raman scattering in layered compound 2H-WS2. Solid State Commun. 1980, 35, 371-373.

92

Sourisseau, C.; Cruege, F.; Fouassier, M.; Alba, M. Second- order Raman effects, inelastic neutron-scattering and lattice- dynamics in 2H-WS2. Chem. Phys. 1991, 150, 281-293.

93

Chen, J. M.; Wang, C. S. Second-order Raman-spectrum of MoS2. Solid State Commun. 1974, 14, 857-860.

94

Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 1999, 60, 2883-2892.

95

Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. Optical properties of MS2 (M = Mo, W) inorganic fullerenelike and nanotube material optical absorption and resonance Raman measurements. J. Mater. Res. 1998, 13, 2412-2417.

96

Viršek, M.; Jesih, A.; Milošević, I.; Damnjanović, M.; Remškar, M. Raman scattering of the MoS2 and WS2 single nanotubes. Surf. Sci. 2007, 601, 2868-2872.

97

Sandoval, S. J.; Yang, D.; Frindt, R. F.; Irwin, J. C. Raman- study and lattice-dynamics of single molecular layers of MoS2. Phys. Rev. B 1991, 44, 3955-3962.

98

Akahama, Y.; Kobayashi, M.; Kawamura, H. Raman study of black phosphorus up to 13 GPa. Solid State Commun. 1997, 104, 311-315.

99

Vanderborgh, C. A.; Schiferl, D. Raman studies of black phosphorus from 0.25 to 7.7 Gpa at 15 k. Phys. Rev. B 1989, 40, 9595-9599.

100

Sugai, S.; Ueda, T.; Murase, K. Pressure dependence of the lattice vibration in the orthorhombic and rhombohedral structures of black phosphorus. J. Phys. Soc. Jpn. 1981, 50, 3356-3361.

101

Kaneta, C.; Katayama-Yoshida, H.; Morita, A. Lattice dynamics of black phosphorus. Solid State Commun. 1982, 44, 613-617.

102

Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753-755.

103

Wagner, V.; Dolling, G.; Powell, B. M.; Landwehr, G. Lattice vibrations of Bi2Te3. Phys. Status Solidi B 1978, 85, 311-317.

104

Kullmann, W.; Geurts, J.; Richter, W.; Lehner, N.; Rauh, H.; Steigenberger, U.; Eichhorn, G.; Geick, R. Effect of hydrostatic and uniaxial pressure on structural properties and Raman active lattice vibrations in Bi2Te3. Phys. Status Solidi B 1984, 125, 131-138.

105

Rauh, H.; Geick, R.; Kohler, H.; Nucker, N.; Lehner, N. Generalized phonon density of states of the layer compounds Bi2Se3, Bi2Te3, Sb2Te3 and Bi2(Te0.5Se0.5)3, (Bi0.5Sb0.5)2Te3. J. Phys. C 1981, 14, 2705-2712.

106

Richter, W.; Becker, C. R. A Raman and far-infrared investigation of phonons in the rhombohedral V2-VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1-xSex)3 (0 < x < 1), (Bi1-ySby)2Te3 (0 < y < 1). Phys. Status Solidi B 1977, 84, 619-628.

107

Michel, K. H.; Verberck, B. Theory of rigid-plane phonon modes in layered crystals. Phys. Rev. B 2012, 85, 094303.

108

Luo, X.; Zhao, Y. Y.; Zhang, J.; Toh, M.; Kloc, C.; Xiong, Q. H.; Quek, S. Y. Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Phys. Rev. B 2013, 88, 195313.

109

Verble, J. L.; Wietling, T. J.; Reed, P. R. Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Commun. 1972, 11, 941-944.

110

Sekine, T.; Izumi, M.; Nakashizu, T.; Uchinokura, K.; Matsuura, E. Raman-scattering and Infrared reflectance in 2H-MoSe2. J. Phys. Soc. Jpn. 1980, 49, 1069-1077.

111

Mead, D. G.; Irwin, J. C. Long wavelength optic phonons in WSe2. Can. J. Phys. 1977, 55, 379-382.

112

Saha, S. K.; Waghmare, U. V.; Krishnamurthy, H. R.; Sood, A. K. Phonons in few-layer graphene and interplanar interaction: A first-principles study. Phys. Rev. B 2008, 78, 165421.

113

Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N. et al. The shear mode of multilayer graphene. Nat. Mater. 2012, 11, 294-300.

114

Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

115

Zeng, H. L.; Zhu, B. R.; Liu, K.; Fan, J. H.; Cui, X. D.; Zhang, Q. M. Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films. Phys. Rev. B 2012, 86, 241301(R).

116

Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T. Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl. Phys. Lett. 2012, 101, 101906.

117

Lui, C. H.; Heinz, T. F. Measurement of layer breathing mode vibrations in few-layer graphene. Phys. Rev. B 2013, 87, 121404(R).

118

Lui, C. H.; Ye, Z. P.; Keiser, C.; Xiao, X.; He, R. Temperature-activated layer-breathing vibrations in few-layer graphene. Nano Lett. 2014, 14, 4615-4621.

119

Richter, H.; Wang, Z. P.; Ley, L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981, 39, 625-629.

120

Sun, Q. -C.; Mazumdar, D.; Yadgarov, L.; Rosentsveig, R.; Tenne, R.; Musfeldt, J. L. Spectroscopic determination of phonon lifetimes in rhenium-doped MoS2 nanoparticles. Nano Lett. 2013, 13, 2803-2808.

121

Yan, Y.; Zhou, X.; Jin, H.; Li, C. -Z.; Ke, X. X.; Van Tendeloo, G.; Liu, K. H.; Yu, D. P.; Dressel, M.; Liao, Z. -M. Surface-facet-dependent phonon deformation potential in individual strained topological insulator Bi2Se3 nanoribbons. ACS Nano 2015, 9, 10244-10251.

122

Wang, C. X.; Zhu, X. G.; Nilsson, L.; Wen, J.; Wang, G.; Shan, X. Y.; Zhang, Q.; Zhang, S. L.; Jia, J. F.; Xue, Q. K. In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Res. 2013, 6, 688-692.

123

Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407- 2414.

124

Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

125

Shi, W.; Lin, M. -L.; Tan, Q. -H.; Qiao, X. -F.; Zhang, J.; Tan, P. -H. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater. 2016, 3, 025016.

126

Wu, J. -B.; Zhao, H.; Li, Y. R.; Ohlberg, D.; Shi, W.; Wu, W.; Wang, H.; Tan, P. -H. Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater. 2016, 4, 756-762.

127

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

128

Campbell, I. H.; Fauchet, P. M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986, 58, 739-741.

129

Khoo, K. H.; Zayak, A. T.; Kwak, H.; Chelikowsky, J. R. First-principles study of confinement effects on the raman spectra of Si nanocrystals. Phys. Rev. Lett. 2010, 105, 115504.

130

Lu, W. L.; Nan, H. Y.; Hong, J. H.; Chen, Y. M.; Zhu, C.; Liang, Z.; Ma, X. Y.; Ni, Z. H.; Jin, C. H.; Zhang, Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 2014, 7, 853-859.

131

Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

132

Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908-4916.

133

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few- layer MoS2. ACS Nano 2010, 4, 2695-2700.

134

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677-9683.

135

Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 2015, 15, 4080-4088.

136

Dong, S.; Zhang, A. M.; Liu, K.; Ji, J. T.; Ye, Y. G.; Luo, X. G.; Chen, X. H.; Ma, X. L.; Jie, Y. H.; Chen, C. F. et al. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus. Phys. Rev. Lett. 2016, 116, 087401.

137

Zhao, Y. Y.; Luo, X.; Zhang, J.; Wu, J. X.; Bai, X. X.; Wang, M. X.; Jia, J. F.; Peng, H. L.; Liu, Z. F.; Quek, S. Y. et al. Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys. Rev. B 2014, 90, 245428.

138

Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403(R).

139

Lazzeri, M.; Piscanec, S.; Mauri, F.; Ferrari, A. C.; Robertson, J. Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys. Rev. B 2006, 73, 155426.

140

Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 2007, 99, 176802.

141

LaForge, A. D.; Frenzel, A.; Pursley, B. C.; Lin, T.; Liu, X. F.; Shi, J.; Basov, D. N. Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Phys. Rev. B 2010, 81, 125120.

142

Di Pietro, P.; Ortolani, M.; Limaj, O.; Di Gaspare, A.; Giliberti, V.; Giorgianni, F.; Brahlek, M.; Bansal, N.; Koirala, N.; Oh, S. et al. Observation of Dirac plasmons in a topological insulator. Nat. Nanotechnol. 2013, 8, 556-560.

143

Chen, C. Y.; Xie, Z. J.; Feng, Y.; Yi, H. M.; Liang, A. J.; He, S. L.; Mou, D. X.; He, J. F.; Peng, Y. Y.; Liu, X. et al. Tunable dirac fermion dynamics in topological insulators. Sci. Rep. 2013, 3, 2411.

144

Costache, M. V.; Neumann, I.; Sierra, J. F.; Marinova, V.; Gospodinov, M. M.; Roche, S.; Valenzuela, S. O. Fingerprints of inelastic transport at the surface of the topological insulator Bi2Se3: Role of electron-phonon coupling. Phys. Rev. Lett. 2014, 112, 086601.

145

Boukhicha, M.; Calandra, M.; Measson, M. -A.; Lancry, O.; Shukla, A. Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes. Phys. Rev. B 2013, 87, 195316.

146

Ji, J. T.; Zhang, A. M.; Fan, J. H.; Li, Y. S.; Wang, X. Q.; Zhang, J. D.; Plummer, E. W.; Zhang, Q. M. Giant magneto-optical Raman effect in a layered transition metal compound. Proc. Natl. Acad. Sci. USA 2016, 113, 2349- 2353.

147

Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260-2267.

148

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

149

Chen, S. -Y.; Zheng, C. X.; Fuhrer, M. S.; Yan, J. Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano Lett. 2015, 15, 2526-2532.

150

Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576-5580.

151

Lu, X.; Utama, M. I. B.; Lin, J. H.; Luo, X.; Zhao, Y. Y.; Zhang, J.; Pantelides, S. T.; Zhou, W.; Quek, S. Y.; Xiong, Q. H. Rapid and nondestructive identification of polytypism and stacking sequences in few-layer molybdenum diselenide by Raman spectroscopy. Adv. Mater. 2015, 27, 4502-4508.

152

Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.

153

Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014, 8, 3895-3903.

154

Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974-1981.

155

Terrones, H.; Del Corro, E.; Feng, S.; Poumirol, J. M.; Rhodes, D.; Smirnov, D.; Pradhan, N. R.; Lin, Z.; Nguyen, M. A. T.; Elias, A. L. et al. New first order raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 2014, 4, 4215.

156

Huang, J. -K.; Pu, J.; Hsu, C. -L.; Chiu, M. -H.; Juang, Z. -Y.; Chang, Y. -H.; Chang, W. -H.; Iwasa, Y.; Takenobu, T.; Li, L. -J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923-930.

157

Mrstik, B. J.; Kaplan, R.; Reinecke, T. L.; Van Hove, M.; Tong, S. Y. Surface-structure determination of the layered compounds MoS2 and NbSe2 by low-energy electron diffraction. Phys. Rev. B 1977, 15, 897-900.

158

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.

159

Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser- thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187-3192.

160

Lu, X.; Utama, M. I. B.; Zhang, J.; Zhao, Y. Y.; Xiong, Q. H. Layer-by-layer thinning of MoS2 by thermal annealing. Nanoscale 2013, 5, 8904-8908.

161

Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dressehaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569-5576.

162

Froehlicher, G.; Lorchat, E.; Fernique, F.; Joshi, C.; Molina-Sánchez, A.; Wirtz, L.; Berciaud, S. Unified description of the optical phonon modes in N-layer MoTe2. Nano Lett. 2015, 15, 6481-6489.

163

Kim, Y.; Jhon, Y. I.; Park, J.; Kim, J. H.; Lee, S.; Jhon, Y. M. Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. Nanoscale 2016, 8, 2309-2316.

164

Shulenburger, L.; Baczewski, A. D.; Zhu, Z.; Guan, J.; Tománek, D. The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 2015, 15, 8170-8175.

165

Luo, N. S.; Ruggerone, P.; Toennies, J. P. Theory of surface vibrations in epitaxial thin films. Phys. Rev. B 1996, 54, 5051-5063.

166

Zhao, Y. Y.; de la Mata, M.; Qiu, R. L. J.; Zhang, J.; Wen, X. L.; Magen, C.; Gao, X. P. A.; Arbiol, J.; Xiong, Q. H. Te-seeded growth of few-quintuple layer Bi2Te3 nanoplates. Nano Res. 2014, 7, 1243-1253.

167

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561-571.

168

Lui, C. H.; Ye, Z. P.; Ji, C.; Chiu, K. -C.; Chou, C. -T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J. -M.; Kidd, T. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.

169

Wang, H.; Feng, M.; Zhang, X.; Tan, P. -H.; Wang, Y. F. In-phase family and self-similarity of interlayer vibrational frequencies in van der Waals layered materials. J. Phys. Chem. C 2015, 119, 6906-6911.

170

Wu, J. -B.; Hu, Z. -X.; Zhang, X.; Han, W. -P.; Lu, Y.; Shi, W.; Qiao, X. -F.; Ijiäs, M.; Milana, S.; Ji, W. et al. Interface coupling in twisted multilayer graphene by resonant raman spectroscopy of layer breathing modes. ACS Nano 2015, 9, 7440-7449.

171

Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329-3333.

172

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low- resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

173

He, J. G.; Hummer, K.; Franchini, C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 89, 075409.

174

Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett. 2014, 14, 5500-5508.

175

Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X.; Shen, Y. -R.; Liu, W. -T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825-829.

176

Zhang, L. M.; Liu, K. H.; Wong, A. B.; Kim, J.; Hong, X. P.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.; Yang, P. D. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 2014, 14, 6418-6423.

177

Plechinger, G.; Mooshammer, F.; Castellanos-Gomez, A.; Steele, G. A.; Schüller, C.; Korn, T. Optical spectroscopy of interlayer coupling in artificially stacked MoS2 layers. 2D Mater. 2015, 2, 034016.

178

Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198-6202.

179

Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950-1956.

180

Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J. C.; Sumpter, B. G.; Meunier, V. et al. Low-frequency raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333-6342.

181

Yan, J. X.; Xia, J.; Wang, X. L.; Liu, L.; Kuo, J. -L.; Tay, B. K.; Chen, S. S.; Zhou, W.; Liu, Z.; Shen, Z. X. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 2015, 15, 8155-8161.

182

Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Sumpter, B. G.; Meunier, V.; Geohegan, D. B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency raman spectroscopy. ACS Nano 2016, 10, 2736-2744.

183

Huang, S. X.; Liang, L. B.; Ling, X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaul, M. S. Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano Lett. 2016, 16, 1435-1444.

184

Luo, X.; Lu, X.; Cong, C. X.; Yu, T.; Xiong, Q. H.; Quek, S. Y. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials—A general bond polarizability model. Sci. Rep. 2015, 5, 14565.

185

Guha, S.; Menéndez, J.; Page, J. B.; Adams, G. B. Empirical bond polarizability model for fullerenes. Phys. Rev. B 1996, 53, 13106-13114.

186

Utama, M. I. B.; Lu, X.; Yuan, Y. W.; Xiong, Q. H. Detrimental influence of catalyst seeding on the device properties of CVD-grown 2D layered materials: A case study on MoSe2. Appl. Phys. Lett. 2014, 105, 253102.

187

Lui, C. H.; Ye, Z. P.; Keiser, C.; Barros, E. B.; He, R. Stacking-dependent shear modes in trilayer graphene. Appl. Phys. Lett. 2015, 106, 041904

188

Zhang, X.; Han, W. -P.; Qiao, X. -F.; Tan, Q. -H.; Wang, Y. -F.; Zhang, J.; Tan, P. -H. Raman characterization of AB- and ABC-stacked few-layer graphene by interlayer shear modes. Carbon 2016, 99, 118-122.

189

Lee, J. -U.; Kim, K.; Han, S.; Ryu, G. H.; Lee, Z.; Cheong, H. Raman signatures of polytypism in molybdenum disulfide. ACS Nano 2016, 10, 1948-1953.

190

He, R.; Yan, J. -A.; Yin, Z. Y.; Ye, Z. P.; Ye, G. H.; Cheng, J.; Li, J.; Lui, C. H. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett. 2016, 16, 1404-1409.

191

Qiao, X. -F.; Wu, J. -B.; Zhou, L. W.; Qiao, J. S.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P. -H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324-8332.

192

Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667-5672.

193

Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154-11164.

194

Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651-3661.

195

Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S.; Moreira, R. L.; Rodin, A. S.; Zapata, J. D.; de Souza, E. A. T.; Castro Neto, A. H. Unusual angular dependence of the raman response in black phosphorus. ACS Nano 2015, 9, 4270-4276.

196

Cai, Y. Q.; Ke, Q. Q.; Zhang, G.; Feng, Y. P.; Shenoy, V. B.; Zhang, Y. -W. Giant phononic anisotropy and unusual anharmonicity of phosphorene: Interlayer coupling and strain engineering. Adv. Funct. Mater. 2015, 25, 2230-2236.

197

Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366-2369.

198

Zhu, B. R.; Zeng, H. L.; Dai, J. F.; Gong, Z. R.; Cui, X. D. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl. Acad. Sci. USA 2014, 111, 11606-11611.

199

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634-638.

200

Efremov, E. V.; Ariese, F.; Gooijer, C. Achievements in resonance Raman spectroscopy: Review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta 2008, 606, 119-134.

201

Fan, J. -H.; Gao, P.; Zhang, A. -M.; Zhu, B. -R.; Zeng, H. -L.; Cui, X. -D.; He, R.; Zhang, Q. -M. Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2. J. Appl. Phys. 2014, 115, 053527.

202

Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131-136.

203

Chakraborty, B.; Matte, H. S. S. R.; Sood, A. K.; Rao, C. N. R. Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc. 2013, 44, 92-96.

204

Lee, J. -U.; Park, J.; Son, Y. -W.; Cheong, H. Anomalous excitonic resonance Raman effects in few-layered MoS2. Nanoscale 2015, 7, 3229-3236.

205

Staiger, M.; Gillen, R.; Scheuschner, N.; Ochedowski, O.; Kampmann, F.; Schleberger, M.; Thomsen, C.; Maultzsch, J. Splitting of monolayer out-of-plane A1' Raman mode in few-layer WS2. Phys. Rev. B 2015, 91, 195419.

206

Schuller, J. A.; Karaveli, S.; Schiros, T.; He, K. L.; Yang, S. Y.; Kymissis, I.; Shan, J.; Zia, R. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 2013, 8, 271-276.

207

Molina-Sánchez, A.; Sangalli, D.; Hummer, K.; Marini, A.; Wirtz, L. Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Phys. Rev. B 2013, 88, 045412.

208

Carvalho, B. R.; Malard, L. M.; Alves, J. M.; Fantini, C.; Pimenta, M. A. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 2015, 114, 136403.

209

Nam, D.; Lee, J. -U.; Cheong, H. Excitation energy dependent Raman spectrum of MoSe2. Sci. Rep. 2015, 5, 17113.

210

Scheuschner, N.; Gillen, R.; Staiger, M.; Maultzsch, J. Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 2015, 91, 235409.

211

del Corro, E.; Terrones, H.; Elias, A.; Fantini, C.; Feng, S. M.; Nguyen, M. A.; Mallouk, T. E.; Terrones, M.; Pimenta, M. A. Excited excitonic states in 1 L, 2 L, 3 L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 2014, 8, 9629-9635.

212

del Corro, E.; Botello-Méndez, A.; Gillet, Y.; Elias, A. L.; Terrones, H.; Feng, S.; Fantini, C.; Rhodes, D.; Pradhan, N.; Balicas, L. et al. Atypical exciton-phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy. Nano Lett. 2016, 16, 2363-2368.

213

Song, Q. J.; Tan, Q. H.; Zhang, X.; Wu, J. B.; Sheng, B. W.; Wan, Y.; Wang, X. Q.; Dai, L.; Tan, P. H. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys. Rev. B 2016, 93, 115409.

214

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

215

Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751-758.

216

Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of double- resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 2011, 84, 035433.

217

Wang, G.; Glazov, M. M.; Robert, C.; Amand, T.; Marie, X.; Urbaszek, B. Double resonant Raman scattering and valley coherence generation in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 117401.

218

Sun, L. F.; Yan, J. X.; Zhan, D.; Liu, L.; Hu, H. L.; Li, H.; Tay, B. K.; Kuo, J. -L.; Huang, C. -C.; Hewak, D. W. et al. Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 2013, 111, 126801.

219

Lanzillo, N. A.; Birdwell, A. G.; Amani, M.; Crowne, F. J.; Shah, P. B.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. et al. Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 2013, 103, 093102.

220

Thripuranthaka, M.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158-1163.

221

Late, D. J. Temperature dependent phonon shifts in few- layer black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 5857-5862.

222

Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210-1221.

223

Chi, Z. -H.; Zhao, X. -M.; Zhang, H. D.; Goncharov, A. F.; Lobanov, S. S.; Kagayama, T.; Sakata, M.; Chen, X. -J. Pressure-induced metallization of molybdenum disulfide. Phys. Rev. Lett. 2014, 113, 036802.

224

Fan, W.; Zhu, X.; Ke, F.; Chen, Y. B.; Dong, K. C.; Ji, J.; Chen, B.; Tongay, S.; Ager, J. W.; Liu, K. et al. Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers. Phys. Rev. B 2015, 92, 241408(R).

225

Chang, C. -H.; Fan, X. F.; Lin, S. -H.; Kuo, J. -L. Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B 2013, 88, 195420.

226

Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301(R).

227

Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857-2861.

228

Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562-2572.

229

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

230

Das, A.; Sood, A. K.; Govindaraj, A.; Saitta, A. M.; Lazzeri, M.; Mauri, F.; Rao, C. N. R. Doping in carbon nanotubes probed by Raman and transport measurements. Phys. Rev. Lett. 2007, 99, 136803.

231

Chakraborty, B.; Gupta, S. N.; Singh, A.; Kuiri, M.; Kumar, C.; Muthu, D. V. S.; Das, A.; Waghmare, U. V.; Sood, A. K. Electron-hole asymmetry in the electron- phonon coupling in top-gated phosphorene transistor. 2D Mater. 2016, 3, 015008.

232

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light- emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301-306.

Nano Research
Pages 3559-3597
Cite this article:
Lu X, Luo X, Zhang J, et al. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Research, 2016, 9(12): 3559-3597. https://doi.org/10.1007/s12274-016-1224-5

883

Views

92

Crossref

N/A

Web of Science

94

Scopus

13

CSCD

Altmetrics

Received: 16 May 2016
Revised: 10 July 2016
Accepted: 18 July 2016
Published: 20 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return