AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vapor transport growth of MoS2 nucleated on SiO2 patterns and graphene flakes

Toma Stoica1,2( )Mihai Stoica1,3Martial Duchamp4Andreas Tiedemann1Siegfried Mantl1Detlev Grützmacher1Dan Buca1Beata E. Kardynał1( )
Peter Grünberg Institute 9 (PGI 9) and JARA-Fundamentals of Future Information TechnologiesForschungszentrum JülichJülich52425Germany
National Institute of Materials PhysicsMagureleBucharest077125Romania
Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian AcademyBucharest060021Romania
Peter Grünberg Institute 5 (PGI 5) and JARA-Fundamentals of Future Information TechnologiesForschungszentrum JülichJülich52425Germany
Show Author Information

Graphical Abstract

Abstract

Vapor transport growth of atomically thin MoS2 layers on patterned substrates is investigated, as it is a step towards the self-aligned growth and formation of heterojunctions, which could be useful in future applications. Enhanced formation of MoS2 flakes at the pattern edges is observed on both the substrates examined, namely, patterned thermal SiO2 on Si(100) and graphene flakes on SiO2. The diffusion driven growth leads to the formation of MoS2 monolayers (MLs) with sizes of tens of micrometers around the edges of SiO2 patterns. The growth mode and the optical quality of the MoS2 flakes can be controlled by varying the substrate temperature. Besides the lateral growth, 3R-type pyramids are obtained on prolonging the growth. Lateral MoS2-graphene heterostructures are obtained by using graphene flakes on SiO2 as a substrate.

Electronic Supplementary Material

Download File(s)
12274_2016_1227_MOESM1_ESM.pdf (1.2 MB)

References

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

2

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenidenanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

3

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

4

Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 2014, 16, 095002.

5

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

6

Scheuschner, N.; Ochedowski, O.; Kaulitz, A. -M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of free standing single- and few-layer MoS2. Phys. Rev. B 2014, 89, 125406.

7

Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16–20.

8

Suzuki, R.; Sakano, M.; Zhang, Y. J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 2014, 9, 611–617.

9

Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.

10

Ni, Z. Y.; Liu, Q. H.; Tang, K. C.; Zheng, J. X.; Zhou, J.; Qin, R.; Gao, Z. X.; Yu, D. P.; Lu, J. Tunable bandgap in silicene and germanene. Nano Lett. 2012, 12, 113–118.

11

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

12

Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019–2025.

13

Zhang, W.; Chuu, C. -P.; Huang, J. -K.; Chen, C. -H.; Tsai, M. -L.; Chang, Y. -H.; Liang, C. T.; Chen, Y. -Z.; Chueh, Y. -L.; He, J. -H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

14

Yoon, H. S.; Joe, H. E.; Kim, S. J.; Lee, H. S.; Im, S.; Min, B. -K.; Jun, S. C. Layer dependence and gas molecule absorption property in MoS2Schottky diode with asymmetric metal contacts. Sci. Rep. 2015, 5, 10440.

15

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 2014, 8, 899–907.

16

Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of singleand few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64.

17

Chhowalla, M.; Liu, Z. F.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586.

18

Xenogiannopoulou, E.; Tsipas, P.; Aretouli, K. E.; Tsoutsou, D.; Giamini, S. A.; Bazioti, C.; Dimitrakopulos, G. P.; Komninou, P.; Brems, S.; Huyghebaert, C. et al. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/ Si(111) substrates by molecular beam epitaxy. Nanoscale 2015, 7, 7896–7905.

19

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Largearea vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

20

Liu, K. K.; Zhang, W. J.; Lee, Y. -H.; Lin, Y. -C.; Chang, M. -T.; Su, C. -Y.; Chang, C. -S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

21

Lee, Y. -H.; Zhang, X. -Q.; Zhang, W. J.; Chang, M. -T.; Lin, C. -T.; Chang, K. -D.; Yu, Y. -C.; Wang, J. T. -W.; Chang, C. -S.; Li, L. -J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

22

Wu, S. F.; Huang, C. M.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. D. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768–2772.

23

Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M. S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464–472.

24

Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J. -H.; Lee, S. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015, 7, 1688–1695.

25

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. -C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

26

Kwak, J. Y.; Hwang, J.; Calderon, B.; Alsalman, H.; Munoz, N.; Schutter, B.; Spencer, M. G. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts. Nano Lett. 2014, 14, 4511–4516.

27

Chang, Y. -H.; Lin, C. -T.; Chen, T. -Y.; Hsu, C. -L.; Lee, Y. -H.; Zhang, W. J.; Wei, K. -H.; Li, L. -J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

28

Zeng, S. W.; Hu, S. Y.; Xia, J.; Anderson, T.; Dinh, X. -Q.; Meng, X. -M.; Coquet, P.; Yong, K. -T. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensor. Actuat. B: Chem. 2015, 207, 801–810.

29

Wang, J.; Wu, Z. C.; Hu, K. H.; Chen, X. Y.; Yin, H. B. High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J. Alloys Compd. 2015, 619, 38–43.

30

Zhang, W.; Chuu, C. -P.; Huang, J. -K.; Chen, C. -H.; Tsai, M. -L.; Chang, Y. -H.; Liang, C. -T.; Chen, Y. Z.; Chueh, Y. -L.; He, J. -H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

31

Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

32

Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

33

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

34

van der Zande, M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. -H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

35

Shi, J. P.; Ma, D. L.; Han, G. -F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y.S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

36

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

37

van der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

38

Xia, M.; Li, B.; Yin, K. B.; Capellini, G.; Niu, G.; Gong, Y. J.; Zhou, W.; Ajayan, P. M.; Xie, Y. H. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano 2015, 9, 12246–12254.

39

Ehrlich, G.; Hudda, F. G. Atomic view of surface selfdiffusion: Tungsten on tungsten. J. Chem. Phys. 1966, 44, 1039–1049.

40

Schwoebel, R. L.; Shipsey, E. J. Step motion on crystal surfaces. J. Appl. Phys. 1966, 37, 3682–3686.

Nano Research
Pages 3504-3514
Cite this article:
Stoica T, Stoica M, Duchamp M, et al. Vapor transport growth of MoS2 nucleated on SiO2 patterns and graphene flakes. Nano Research, 2016, 9(11): 3504-3514. https://doi.org/10.1007/s12274-016-1227-2

654

Views

16

Crossref

N/A

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 29 May 2016
Revised: 13 July 2016
Accepted: 21 July 2016
Published: 30 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return