AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A wrinkle to sub-100 nm yolk/shell Fe3O4@SiO2 nanoparticles

Hualin Ding1Yunxia Zhang1Sichao Xu1Guanghai Li1,2( )
Key Laboratory of Material PhysicsAnhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031China
School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

Yolk/shell nanoparticles (NPs), which integrate functional cores (likes Fe3O4) and an inert SiO2 shell, are very important for applications in fields such as biomedicine and catalysis. An acidic medium is an excellent etchant to achieve hollow SiO2 but harmful to most functional cores. Reported here is a method for preparing sub-100 nm yolk/shell Fe3O4@SiO2 NPs by a mild acidic etching strategy. Our results demonstrate that establishment of a dissolution–diffusion equilibrium of silica is essential for achieving yolk/shell Fe3O4@SiO2 NPs. A uniform increase in the silica compactness from the inside to the outside and an appropriate pH value of the etchant are the main factors controlling the thickness and cavity of the SiO2 shell. Under our "standard etching code", the acid-sensitive Fe3O4 core can be perfectly preserved and the SiO2 shell can be selectively etched away. The mechanism of regulation of SiO2 etching and acidic etching was investigated.

Electronic Supplementary Material

Download File(s)
nr-9-12-3632_ESM.pdf (5.5 MB)

References

1

Priebe, M.; Fromm, K. M. Nanorattles or yolk-shell nanoparticles—What are they, how are they made, and what are they good for? Chem.Eur. J. 2015, 21, 3854-3874.

2

Yang, Y.; Liu, X.; Li, X. B.; Zhao, J.; Bai, S. Y.; Liu, J.; Yang, Q. H. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem., Int. Ed. 2012, 51, 9164-9168.

3

Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W. D.; Xing, X. R.; Lu, G. Q. M. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578-12591.

4

Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830-15833.

5

Lee, I.; Joo, J. B.; Yin, Y. D.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem., Int. Ed. 2011, 50, 10208-10211.

6

Lv, R. C.; Yang, P. P.; He, F.; Gai, S. L.; Li, C. X.; Dai, Y. L.; Yang, G. X.; Lin, J. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano 2015, 9, 1630-1647.

7

Lu, S.; Tu, D. T.; Hu, P.; Xu, J.; Li, R. F.; Wang, M.; Chen, Z.; Huang, M. D.; Chen, X. Y. Multifunctional nano-bioprobes based on rattle-structured upconverting luminescent nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 7915-7919.

8

Fan, W. P.; Shen, B.; Bu, W. B.; Chen, F.; Zhao, K. L.; Zhang, S. J.; Zhou, L. P.; Peng, W. J.; Xiao, Q. F.; Xing, H. Y. et al. Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J. Am. Chem. Soc. 2013, 135, 6494-6503.

9

Kang, X. J.; Cheng, Z. Y.; Yang, D. M.; Ma, P. A.; Shang, M. M.; Peng, C.; Dai, Y. L.; Lin, J. Design and synthesis of multifunctional drug carriers based on luminescent rattle- type mesoporous silica microspheres with a thermosensitive hydrogel as a controlled switch. Adv. Funct. Mater. 2012, 22, 1470-1481.

10

Kim, J. G.; Kim, S. M.; Lee, I. S. Mechanistic insight into the yolk@shell transformation of MnO@silica nanospheres incorporating Ni2+ ions toward a colloidal hollow nanoreactor. Small 2015, 11, 1930-1938.

11

Lee, J.; Kim, S. M.; Lee, I. S. Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today 2014, 9, 631-667.

12

Fang, X. L.; Liu, Z. H.; Hsieh, M. F.; Chen, M.; Liu, P. X.; Chen, C.; Zheng, N. F. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 2012, 6, 4434-4444.

13

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523-1528.

14

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. -C.; Cui, Y. Fsulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

15

Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279-2283.

16

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.

17

Chen, Y.; Chen, H. R.; Shi, J. L. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: Principles, synthesis, and applications. Acc. Chem. Res. 2014, 47, 125-137.

18

Pérez-Lorenzo, M.; Vaz, B.; Salgueiriño, V.; Correa-Duarte, M. A. Hollow-shelled nanoreactors endowed with high catalytic activity. Chem. —Eur. J. 2013, 19, 12196-12211.

19

Gai, S. L.; Yang, P. P.; Li, C. X.; Wang, W. X.; Dai, Y. L.; Niu, N.; Lin, J. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv. Funct. Mater. 2010, 20, 1166-1172.

20

Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504-1534.

21

Dong, R. H.; Liu, W. M.; Hao, J. C. Soft vesicles in the synthesis of hard materials. Acc. Chem. Res. 2012, 45, 504-513.

22

Zhu, Y. F.; Kockrick, E.; Ikoma, T.; Hanagata, N.; Kaskel, S. An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates. Chem. Mater. 2009, 21, 2547-2553.

23

Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111-1114.

24

Yang, Y.; Liu, J.; Li, X. B.; Liu, X.; Yang, Q. H. Organosilane-assisted transformation from core-shell to yolk-shell nanocomposites. Chem. Mater. 2011, 23, 3676- 3684.

25

Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem., Int. Ed. 2010, 49, 4981-4985.

26

Wu, X. J.; Xu, D. S. Formation of yolk/SiO2 shell structures using surfactant mixtures as template. J. Am. Chem. Soc. 2009, 131, 2774-2775.

27

Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 2010, 4, 529-539.

28

Chen, D.; Li, L. L.; Tang, F. Q.; Qi, S. Facile and scalable synthesis of tailored silica "nanorattle" structures. Adv. Mater. 2009, 21, 3804-3807.

29

Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D. Permeable silica shell through surface-protected etching. Nano Lett. 2008, 8, 2867-2871.

30

Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface- protected etching process. Nano Res. 2009, 2, 583-591.

31

Colombo, M.; Carregal-Romero, S.; Casula, M. F.; Gutiérrez, L.; Morales, M. P.; Böhm, I. B.; Heverhagen, J. T.; Prosperi, D.; Parak, W. J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012, 41, 4306-4334.

32

Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale 2015, 7, 19789-19873.

33

Zhang, L. Y.; Wang, T. T.; Yang, L.; Liu, C.; Wang, C. G.; Liu, H. Y.; Wang, Y. A.; Su, Z. M. General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: A platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chem. —Eur. J. 2012, 18, 12512-12521.

34

Hu, Y. X.; Zhang, Q.; Goebl, J.; Zhang, T. R.; Yin, Y. D. Control over the permeation of silica nanoshells by surface- protected etching with water. Phys. Chem. Chem. Phys. 2010, 12, 11836-11842.

35

Park, S. J.; Kim, Y. J.; Park, S. J. Size-dependent shape evolution of silica nanoparticles into hollow structures. Langmuir 2008, 24, 12134-12137.

36

Song, X. H.; Ding, T.; Yao, L.; Lin, M.; Tan, R. L. S.; Liu, C. C.; Sokol, K.; Yu, L.; Lou, X. W.; Chen, H. Y. On the origin and underappreciated effects of ion doping in silica. Small 2015, 11, 4351-4365.

37

Yu, Q. Y.; Wang, P. P.; Hu, S.; Hui, J. F.; Zhuang, J.; Wang, X. Hydrothermal synthesis of hollow silica spheres under acidic conditions. Langmuir 2011, 27, 7185-7191.

38

Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed. 2008, 47, 8438-8441.

39

Yi, D. K.; Lee, S. S.; Papaefthymiou, G. C.; Ying, J. Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem. Mater. 2006, 18, 614-619.

40

Park, J.; An, K. J.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large- scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.

41

Ding, H. L.; Zhang, Y. X.; Wang, S.; Xu, J. M.; Xu, S. C.; Li, G. H. Fe3O4@SiO2 core/shell nanoparticles: The silica coating regulations with a single core for different core sizes and shell thicknesses. Chem. Mater. 2012, 24, 4572-4580.

42

Osseo-Asare, K.; Arriagada, F. J. Growth kinetics of nanosize silica in a nonionic water-in-oil microemulsion: A reverse micellar pseudophase reaction model. J. Colloid Interface Sci. 1999, 218, 68-76.

43

Alexander, G. B. The effect of particle size on the solubility of amorphous silica in water. J. Phys. Chem. 1957, 61, 1563-1564.

44

Chen, S. L.; Dong, P.; Yang, G. H.; Yang, J. J. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Ind. Eng. Chem. Res. 1996, 35, 4487-4493.

45

Wong, Y. J.; Zhu, L. F.; Teo, W. S.; Tan, Y. W.; Yang, Y. H.; Wang, C.; Chen, H. Y. Revisiting the stöber method: Inhomogeneity in silica shells. J. Am. Chem. Soc. 2011, 133, 11422-11425.

46

Liu, J. N.; Bu, J. W.; Bu, W. B.; Zhang, S. J.; Pan, L. M.; Fan, W. P.; Chen, F.; Zhou, L. P.; Peng, W. J.; Zhao, K. L. et al. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem., Int. Ed. 2014, 53, 4551-4555.

47

Zhao, L.; Zhao, Y. F.; Han, Y. Pore fabrication in various silica-based nanoparticles by controlled etching. Langmuir 2010, 26, 11784-11789.

48

Cornell, R. M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Seconded, 2nd ed.; Wiley-VCH: Weinheim, 2003.

49

Greenberg, S. A. Thermodynamic functions for the solution of silica in water. J. Phys. Chem. 1957, 61, 196-197.

50

Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862-3875.

51

Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373-2433.

52

Bogush, G. H.; Zukoski, C. F. Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J. Colloid Interface Sci. 1991, 142, 1-18.

Nano Research
Pages 3632-3643
Cite this article:
Ding H, Zhang Y, Xu S, et al. A wrinkle to sub-100 nm yolk/shell Fe3O4@SiO2 nanoparticles. Nano Research, 2016, 9(12): 3632-3643. https://doi.org/10.1007/s12274-016-1233-4

596

Views

16

Crossref

N/A

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 12 April 2016
Revised: 27 July 2016
Accepted: 28 July 2016
Published: 30 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return