Graphical Abstract

Efficient probes/contrast agents are highly desirable for good-performance photoacoustic (PA) imaging, where the PA signal amplitude of a probe is dominated by both its optical absorption and the conversion efficiency from absorbed laser energy to acoustic waves. Nanoprobes have a unique micromechanism of PA energy conversion due to the size effect, which, however, has not been quantitatively demonstrated and effectively utilized. Here, we present quantitative simulations of the PA signal production process for plasmonmediated nanoprobes based on the finite element analysis method, which were performed to provide a deep understanding of their PA conversion micromechanism. Moreover, we propose a method to amplify the PA conversion efficiency of nanoprobes through the use of thermally confined shell coating, which allows the active control of the conversion efficiency beyond that of conventional probes. Additionally, we deduced the dependence of the conversion efficiency on the shell properties. Gold-nanoparticles/polydimethylsiloxane nanocomposites were experimentally synthesized in the form of gel and microfilms to verify our idea and the simulation results agreed with the experiments. Our work paves the way for the rational design and optimization of nanoprobes with improved conversion efficiency.
Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458-1462.
Diebold, G. J.; Sun, T.; Khan, M. I. Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 1991, 67, 3384-3387.
Yuan, Z.; Jiang, H. B. Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media. Appl. Phys. Lett. 2006, 88, 231101.
Galanzha, E. I.; Shashkov, E. V.; Kelly, T.; Kim, J. W.; Yang, L.; Zharov, V. P. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 2009, 4, 855-860.
Hsieh, B. Y.; Chen, S. L.; Ling, T.; Guo, L. J.; Li, P. C. All-optical scanhead for ultrasound and photoacoustic dual- modality imaging. Opt. Express 2012, 20, 1588-1596.
Vargas, H.; Miranda, L. C. M. Photoacoustic and related photothermal techniques. Phys. Rep. 1988, 161, 43-101.
Cox, B.; Laufer, J. G.; Arridge, S. R.; Beard, P. C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 061202.
Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803-806.
Jiang, Y. Y.; Deng, Z. J; Yang, D.; Deng, X.; Li, Q.; Sha, Y. L; Li, C. H.; Xu, D. S. Gold nanoflowers for 3D volumetric molecular imaging of tumors by photoacoustic tomography. Nano Res. 2015, 8, 2152-2161.
Zha, Z. B.; Deng, Z. J.; Li, Y. Y.; Li, C. H.; Wang, J. R.; Wang, S. M.; Qu, E. Z.; Dai, Z. F. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 2013, 5, 4462-4467.
Roy, I.; Shetty, D.; Hota, D. R.; Baek, K.; Kim, J.; Kim, C.; Kappert, S.; Kim, K. A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic- resistant bacteria. Angew. Chem. 2015, 127, 15367-15370.
Nie, L. M.; Wang, S. J; Wang, X. Y.; Rong, P. F.; Ma, Y.; Liu, G.; Huang, P.; Lu, G. M.; Chen, X. Y. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 2014, 10, 1585-1593.
De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557-562.
Bao, C. C.; Conde, J.; Pan, F.; Li, C.; Zhang, C. L.; Tian, F. R.; Liang, S. J.; de la Fuente, J. M.; Cui, D. X. Gold nanoprisms as a hybrid in vivo cancer theranostic platform for in situ photoacoustic imaging, angiography, and localized hyperthermia. Nano Res. 2016, 9, 1043-1056.
Li, P. C.; Wang, C. R. C.; Shieh, D. B.; Wei, C. W.; Liao, C. K.; Poe, C.; Jhan, S.; Ding, A. A.; Wu, Y. N. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt. Express 2008, 16, 18605-18615.
Bouchard, L. S.; Anwar, M. S.; Liu, G. L.; Hann, B.; Xie, Z. H.; Gray, J. W.; Wang, X. D.; Pines, A.; Chen, F. F. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc. Natl. Acad. Sci. USA 2009, 106, 4085-4089.
Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848-851.
Ray, A.; Wang, X. D.; Lee, Y. E. K.; Hah, H. J.; Kim, G.; Chen, T.; Orringer, D. A.; Sagher, O.; Liu, X. J.; Kopelman, R. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 2011, 4, 1163-1173.
Lu, W.; Melancon, M. P.; Xiong, C. Y.; Huang, Q.; Elliott, A.; Song, S. L.; Zhang, R.; Flores, L. G.; Gelovani, J. G.; Wang, L. V. et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 2011, 71, 6116-6121.
Agarwal, A.; Huang, S. W.; O'Donnell, M.; Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.
Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near- infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.
Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348-354.
Chen, Y. S.; Frey, W.; Aglyamov, S.; Emelianov, S. Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles. Small 2012, 8, 47-52.
Wang, N. N.; Zhao, Z. L.; Lv, Y. F; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 2014, 7, 1291-1301.
Pitsillides, C. M.; Joe, E. K.; Wei, X. B.; Anderson, R. R.; Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 2003, 84, 4023-4032.
Maas, S. A.; Ellis, B. J.; Ateshian, G. A.; Weiss, J. A. FEBio: Finite elements for biomechanics. J. Biomech. Eng. 2012, 134, 011005.
Groeneveld, R. H. M.; Sprik, R.; Lagendijk, A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B 1995, 51, 11433-11445.
Furlani, E. P.; Karampelas, I. H.; Xie, Q. Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. Lab Chip 2012, 12, 3707-3719.
Rioux, D.; Vallières, S.; Besner, S.; Muñoz, P.; Mazur, E.; Meunier, M. An analytic model for the dielectric function of Au, Ag, and their alloys. Adv. Opt. Mater. 2014, 2, 176-182.
Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797-4862.
Hatef, A.; Darvish, B.; Dagallier, A.; Davletshin, Y. R.; Johnston, W.; Kumaradas, J. C.; Rioux, D.; Meunier, M. Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water. J. Phys. Chem. C 2015, 119, 24075-24080.
Calasso, I. G.; Craig, W.; Diebold, G. J. Photoacoustic point source. Phys. Rev. Lett. 2001, 86, 3550-3553.
Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 47, 64-69.
Pelivanov, I. M.; Kopylova, D. S.; Podymova, N. B.; Karabutov, A. A. Optoacoustic method for determination of submicron metal coating properties: Theoretical consideration. J. Appl. Phys. 2009, 106, 013507.
Brugger, K. Generalized Grüneisen parameters in the anisotropic Debye model. Phys. Rev. 1965, 137, A1826.
Baac, H. W.; Ok, J. G.; Maxwell, A.; Lee, K. T.; Chen, Y. C.; Hart, A. J.; Xu, Z.; Yoon, E.; Guo, L. J. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Sci. Rep. 2012, 2, 989.
Jo, B. H.; Van Lerberghe, L. M.; Motsegood, K. M.; Beebe, D. J. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 2009, 9, 76-81.
Toepke, M. W.; Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006, 6, 1484-1486.
Zhang, Q.; Xu, J. J.; Liu, Y.; Chen, H. Y. In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 2008, 8, 352-357.
Scott, A.; Gupta, R.; Kulkarni, G. U. A simple water-based synthesis of Au nanoparticle/PDMS composites for water purification and targeted drug release. Macromol. Chem. Phys. 2010, 211, 1640-1647.
Lin, C. P.; Kelly, M. W. Cavitation and acoustic emission around laser-heated microparticles. Appl. Phys. Lett. 1998, 72, 2800-2802.
Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618.
McLaughlan, J. R.; Roy, R. A.; Ju, H. Y.; Murray, T. W. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation. Opt. Lett. 2010, 35, 2127-2129.