AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation

Zhihong Yang1( )Hualiang Lv1Renbing Wu2( )
College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211100China
Department of Materials ScienceFudan UniversityShanghai200433China
Show Author Information

Graphical Abstract

Abstract

Exploring lightweight microwave attenuation materials with strong and tunable wideband microwave absorption is highly desirable but remains a significant challenge. Herein, three-dimensional (3D) porous hybrid composites consisting of NiFe nanoparticles embedded within carbon nanocubes decorated on graphene oxide (GO) sheets (NiFe@C nanocubes@GO) as high-performance microwave attenuation materials have been rationally synthesized. The 3D porous hybrid composites are fabricated by a simple method, which involves one-step pyrolysis of NiFe Prussian blue analogue nanocubes in the presence of GO sheets. Benefiting from the unique structural features that exhibit good magnetic and dielectric losses as well as a proper impedance match, the resulting NiFe@C nanocubes@GO composites show excellent microwave attenuation ability. With a minimum reflection loss (RL) of–51 dB at 7.7 GHz at a thickness of 2.8 mm and maximum percentage bandwidth of 38.6% for RL < –10 dB at a thickness of 2.2 mm, the NiFe@C nanocubes@GO composites are superior to the previously reported state-of-the-art carbon-based microwave attenuation materials.

Electronic Supplementary Material

Download File(s)
nr-9-12-3671_ESM.pdf (1 MB)

References

1

Yang, Z. H.; Li, Z. W.; Yang, Y. H.; Liu, L.; Kong, L. B. Dielectric and magnetic properties of NiCuZn ferrite coated sendust flakes through a sol-gel approach. J. Magn. Magn. Mater. 2013, 331, 232-236.

2

Liu, X. G.; Li, B.; Geng, D. Y.; Cui, W. B.; Yang, F.; Xie, Z. G.; Kang, D. J.; Zhang, Z. D. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 2009, 47, 470-474.

3

Srivastava, R. K.; Narayanan, T. N.; Mary, A. P. R.; Anantharaman, M. R.; Srivastava, A.; Vajtai, R.; Ajayan, P. M. Ni filled flexible multi-walled carbon nanotube-polystyrene composite films as efficient microwave absorbers. Appl. Phys. Lett. 2011, 99, 113116.

4

Yang, Z. H.; Li, Z. W.; Yu, L. H.; Yang, Y. H.; Xu, Z. C. Achieving high performance electromagnetic wave attenuation: A rational design of silica coated mesoporous iron microcubes. J. Mater. Chem. C 2014, 2, 7583-7588.

5

Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv, B.; Lei, J. P.; Lee, C. G. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 2006, 89, 053115.

6

Wu, L. Z.; Ding, J.; Jiang H. B.; Chen, L. F.; Ong, C. K. Particle size influence to the microwave properties of iron based magnetic particulate composites. J. Magn. Magn. Mater. 2005, 285, 233-239.

7

Li, N.; Hu, C. W.; Cao, M. H. Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith. Phys. Chem. Chem. Phys. 2013, 15, 7685-7689.

8

Wang, T.; Wang, H. D.; Chi, X.; Li, R.; Wang, J. B. Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 2014, 74, 312-318.

9

Liu, X. G.; Qu, Z. Q.; Geng, D. Y.; Han, Z.; Jiang, J. J.; Liu, W.; Zhang, Z. D. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon 2010, 48, 891-897.

10

Tong, G. X.; Liu, F. T.; Wu, W. H.; Du, F. F.; Guan, J. G. Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2014, 2, 7373-7382.

11

Xiang, J.; Li, J. L.; Zhang, X. H.; Ye, Q.; Xu, J. H.; Sheng, X. Q. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high- performance electromagnetic wave absorbers. J. Mater. Chem. A 2014, 2, 16905-16914.

12

Zhao, X. C.; Zhang, Z. M.; Wang, L. Y.; Xi, K.; Cao, Q. Q.; Wang, D. H.; Yang, Y.; Du, Y. W. Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 2013, 3, 3421.

13

Gupta, V.; Patra, M. K.; Shukla, A.; Saini, L.; Songara, S.; Jani, R.; Vadera, S. R.; Kumar, N. Synthesis and investigations on microwave absorption properties of core-shell FeCo(C) alloy nanoparticles. Sci. Adv. Mater. 2014, 6, 1196-1202.

14

Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 2014, 10, 2096-2107.

15

Qiang, R.; Du, Y. C.; Zhao, H. T.; Wang, Y.; Tian, C. H.; Li, Z. G.; Han, X. J.; Xu, P. Metal organic framework- derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 2015, 3, 13426-13434.

16

Wang, C.; Han, X. J.; Xu, P.; Zhang, X. L.; Du, Y. C.; Hu, S. R.; Wang, J. Y.; Wang, X. H. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 2011, 98, 072906.

17

Liang, J. J.; Wang, Y.; Huang, Y.; Ma, Y. F.; Liu, Z. F.; Cai, J. M.; Zhang, C. D.; Gao, H. J.; Shen, Y. S. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922-925.

18

Ren, Y. L.; Wu, H. Y.; Lu, M. M.; Chen, Y. J.; Zhu, C. L.; Gao, P.; Cao, M. S.; Li, C. Y.; Ouyang, Q. Y. Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: Synthesis and excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2012, 4, 6436-6442.

19

Qi, X. S.; Hu, Q.; Xu, J. L.; Xie, R.; Jiang, Y.; Zhong, W.; Du, Y. W. The synthesis and excellent electromagnetic radiation absorption properties of core/shell-structured Co/carbon nanotube-graphene nanocomposites. RSC Adv. 2016, 6, 11382-11387.

20

Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

21

Hu, M.; Ishihara, S.; Ariga, K.; Imura, M.; Yamauchi, Y. Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chem. —Eur. J. 2013, 19, 1882-1885.

22

Du, Y. C.; Liu, T.; Yu, B.; Gao, H. B.; Xu, P.; Wang, J. Y.; Wang, X. H.; Han, X. J. The electromagnetic properties and microwave absorption of mesoporous carbon. Mater. Chem. Phys. 2012, 135, 884-891.

23

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997-13006.

24

Nemanich, R. J.; Solin, S. A. First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 1979, 20, 392-401.

25

Li, X. H.; Zhu, H.; Feng, J.; Wang, J. W.; Deng, X.; Zhou, B. F.; Zhang, H. L.; Xue, D. S.; Li, F. S.; Mellors, N. J. et al. One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon 2013, 60, 488-497.

26

Wu, R. B.; Wang, D. P.; Kumar, V.; Zhou, K.; Law, A. W. K.; Lee, P. S.; Lou, J.; Chen, Z. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chem. Comm. 2015, 51, 3109-3112.

27

Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high- performance lithium-ion batteries. Adv. Mater. 2015, 27, 3038-3044.

28

Han, D. H.; Wang, J. P.; Feng, Y. B.; Luo, H. L. Influence of size and magnetocrystalline anisotropy on spin canting anomaly in fine ferrimagnetic particles. J. Appl. Phys. 1994, 76, 6591-6593.

29

Fan, X. A.; Guan, J. G.; Wang, W.; Tong, G. X. Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures. J. Phys. D: Appl. Phys. 2009, 42, 075006.

30

Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540-10547.

31

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124-139.

32

Xu, P.; Han, X. J.; Wang, C.; Zhou, D. H.; Lv, Z. S.; Wen, A. H.; Wang, X. H.; Zhang, B. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 2008, 112, 10443-10448.

33

Mattsson, M. S.; Niklasson, G. A.; Forsgren, K.; Hårsta, A. A frequency response and transient current study of β-Ta2O5: Methods of estimating the dielectric constant, direct current conductivity, and ion mobility. J. Appl. Phys. 1999, 85, 2185-2191.

34

Afandiyeva, I. M.; Dökme, I.; Altindal, Ş.; Bülbül, M. M.; Tataroğlu, A. Frequency and voltage effects on the dielectric properties and electrical conductivity of Al-TiW-Pd2Si/n-Si structures. Microelectron. Eng. 2008, 85, 247-252.

35

Che, R. C.; Zhi, C. Y.; Liang, C. Y.; Zhou, X. G. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 2006, 88, 033105.

36

Deng, L. J.; Han, M. G. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 2007, 91, 023119.

37

Liu, T.; Zhou, P. H.; Xie, J. L.; Deng, L. J. Electromagnetic and absorption properties of urchinlike Ni composites at microwave frequencies. J. Appl. Phys. 2012, 111, 093905.

38

Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291-18299.

39

Yang, Z. H.; Li, Z. W.; Yang, Y. H.; Xu, Z. C. Optimization of ZnxFe3-xO4 hollow spheres for enhanced microwave attenuation. ACS Appl. Mater. Interfaces 2014, 6, 21911- 21915.

40

Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave Absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949-6956.

41

Saville, P. Review of radar absorbing materials; Defence R & D Canada Technical Memorandum: Atlantic, NS, Canada, 2005; pp18.

42

Alici, K. B.; Bilotti, F.; Vegni, L.; Ozbay, E. Experimental verification of metamaterial based subwavelength microwave absorbers. J. Appl. Phys. 2010, 108, 083113.

43

Li, Z. W.; Yang, Z. H.; Kong, L. B. Enhanced microwave magnetic and attenuation properties for Z-type barium ferrite composites with flaky fillers. J. Appl. Phys. 2011, 110, 063907.

44

Yan, L. G.; Wang, J. B.; Han, X. H.; Ren, Y.; Liu, Q. F.; Li, F. S. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 2010, 21, 095708.

Nano Research
Pages 3671-3682
Cite this article:
Yang Z, Lv H, Wu R. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Research, 2016, 9(12): 3671-3682. https://doi.org/10.1007/s12274-016-1238-z
Part of a topical collection:

730

Views

234

Crossref

N/A

Web of Science

229

Scopus

9

CSCD

Altmetrics

Received: 08 June 2016
Revised: 25 July 2016
Accepted: 26 July 2016
Published: 10 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return