Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A flexible and transparent triboelectric nanogenerator (FT-TENG) has great potential for application in self-powered biosensor systems, electronic skin and wearable electronic devices. However, improving the output performance with little damage to its optical properties is challenging. Herein, we have developed an FT-TENG that has a well-ordered nest-like porous polydimethylsiloxane (NP-PDMS) film and graphene transparent electrodes. The NP-PDMS film with ordered pores is fabricated by hydrochloric acid etching of 500 nm sized ZnO spheres made of aggregated nanoparticles, having a light transmittance of 81.8% and a water contact angle of 118.62°. The FT-TENG based on the NP-PDMS film with a porosity of 12%, gives a maximum output of 271 V and 7.8 μA, which are respectively, 3.7 and 2.1-fold of those of a TENG with a flat PDMS film. The peak output power reaches 0.39 mW with a load resistance of 9.01 MΩ. The dielectric constant and effective thickness of the NP-PDMS film and the capacitance and charge transfer of the FT-TENG are systematically investigated. This work provides a novel and effective method to enhance the performance of FT-TENGs with little damage to their optical properties.
Jeong, C. K.; Park, K. I.; Son, J. H.; Hwang, G. T.; Lee, S. H.; Park, D. Y.; Lee, H. E.; Lee, H. K.; Byun, M.; Lee, K. J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043.
Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G. T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.
Hinchet, R.; Seung, W.; Kim, S. -W. Recent progress on flexible triboelectric nanogenerators for self-powered electronics. ChemSusChem 2015, 8, 2327–2344.
Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.
Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K. -S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H. -J. et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 2014, 26, 3918–3925.
Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.
Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.
Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.
Fan, F. -R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.
Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.
Guo, H. Y.; Wen, Z.; Zi, Y. L.; Yeh, M. H.; Wang, J.; Zhu, L. P.; Hu, C. G.; Wang, Z. L. A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 2016, 6, 1501593.
Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiberbased supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.
Huang, L. B.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Xu, W.; Hao, J. H. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv. Mater. 2016, 28, 2744–2751.
Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2014, 2, 2079–2087.
Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.
Shin, S. -Y.; Saravanakumar, B.; Ramadoss, A.; Kim, S. J. Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energ. Res. 2016, 40, 288–297.
Xiao, X. Z.; Lü, C.; Wang, G.; Xu, Y.; Wang, J. P.; Yang, H. Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane. Chem. Res. Chinese U. 2015, 31, 434–438.
Yun, B. K.; Kim, J. W.; Kim, H. S.; Jung, K. W.; Yi, Y.; Jeong, M. -S.; Ko, J. -H.; Jung, J. H. Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy 2015, 15, 523–529.
Fan, F. R.; Luo, J. J.; Tang, W.; Li, C. Y.; Zhang, C. P.; Tian, Z. Q.; Wang, Z. L. Highly transparent and flexible triboelectric nanogenerators: Performance improvements and fundamental mechanisms. J. Mater. Chem. A 2014, 2, 13219–13225.
Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. -S.; Lee, J. -H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. -W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.
Lee, S. H.; Ko, Y. H.; Yu, J. S. Facile fabrication and characterization of arch-shaped triboelectric nanogenerator with a graphite top electrode. Phys. Status Solidi A 2015, 212, 401–405.
Jang, D. J.; Kim, Y.; Kim, T. Y.; Koh, K.; Jeong, U.; Cho, J. Force-assembled triboelectric nanogenerator with highhumidity-resistant electricity generation using hierarchical surface morphology. Nano Energy 2016, 20, 283–293.
Lee, S.; Ko, W.; Oh, Y.; Lee, J.; Baek, G.; Lee, Y.; Sohn, J.; Cha, S.; Kim, J.; Park, J.; Hong, J. Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 2015, 12, 410–418.
Zhu, Y. B.; Yang, B.; Liu, J. Q.; Wang, X. Z.; Chen, X.; Yang, C. S. An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J. Microelectromech. S. 2015, 24, 513–515.
He, X. M.; Guo, H. Y.; Yue, X. L.; Gao, J.; Xia, Y.; Hu, C. G. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 2015, 7, 1896–1903.
Chun, J.; Kim, J. W.; Jung, W. -S.; Kang, C. -Y.; Kim, S. -W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.
Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.
Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.
Dudem, B.; Ko, Y. H.; Leem, J. W.; Lee, S. H.; Yu, J. S. Highly transparent and flexible triboelectric nanogenerators with subwavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl. Mater. Interfaces 2015, 7, 20520–20529.
Jeong, C. K.; Baek, K. M.; Niu, S. M.; Nam, T. W.; Hur, Y. H.; Park, D. Y.; Hwang, G. -T.; Byun, M.; Wang, Z. L.; Jung, Y. S. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014, 14, 7031–7038.
Juárez-Moreno, J. A.; ávila-Ortega, A.; Oliva, A. I.; Avilés, F.; Cauich-Rodríguez, J. V. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Appl. Surf. Sci. 2015, 349, 763–773.
Peng, F. P.; Ni, Y. R.; Zhou, Q.; Kou, J. H.; Lu, C. H.; Xu, Z. Z. Fabrication of a flexible graphene-TiO2/PDMS photocatalytic film by combining air atmospheric pressure glow discharge treatment. Chem. Eng. Process. 2016, 101, 8–15.
Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.
Guo, H. Y.; He, X. M.; Hu, C. G.; Tian, Y. S.; Xi, Y.; Chen, J.; Tian, L. Effect of particle size in aggregates of ZnO-aggregate-based dye-sensitized solar cells. Electrochim. Acta 2014, 120, 23–29.
Shahzad, M. I.; Giorcelli, M.; Shahzad, N.; Guastella, S.; Castellino, M.; Jagdale, P.; Tagliaferro, A. Study of carbon nanotubes based polydimethylsiloxane composite films. J. Phys. 2013, 439, 012010.
Mao, Y. C.; Zhao, P.; McConohy, G.; Yang, H.; Tong, Y. X.; Wang, X. D. Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv. Energy Mater. 2014, 4, 1301624.
Lee, J. H.; Hinchet, R.; Kim, S. K.; Kim, S.; Kim, S. W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613.