AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries

Mingkai Liu1,2Zhibin Yang2Hao Sun2Chao Lai1Xinsheng Zhao3Huisheng Peng2( )Tianxi Liu1,4( )
School of Chemistry and Chemical EngineeringJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhou221116China
State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular Science and Laboratory of Advanced MaterialsFudan UniversityShanghai200438China
School of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhou221116China
State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
Show Author Information

Graphical Abstract

Abstract

The soluble nature of polysulfide species created on the sulfur electrode has severely hampered the electrochemical performance of lithium–sulfur (Li–S) batteries. Trapping and anchoring polysulfides are promising approaches for overcoming this issue. In this work, a mechanically robust, electrically conductive hybrid carbon aerogel (HCA) with aligned and interconnected pores was created and investigated as an interlayer for Li–S batteries. The hierarchical cross-linked networks constructed by graphene sheets and carbon nanotubes can act as an "internet" to capture the polysulfide, while the microand nano-pores inside the aerogel can facilitate quick penetration of the electrolyte and rapid transport of lithium ions. As advantages of the unique structure and excellent accommodation of the volume change of the active materials, a high specific capacity of 1, 309 mAh·g-1 at 0.2 C was achieved for the assembled Li–S battery, coupled with good rate performance and long-term cycling stability (78% capacity retention after 600 cycles at 4 C).

Electronic Supplementary Material

Download File(s)
nr-9-12-3735_ESM.pdf (5.1 MB)

References

1

Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun. 2013, 4, 2985.

2

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

3

Yang, Z. B.; Sun, H.; Chen, T.; Qiu, L. B.; Luo, Y. F.; Peng, H. S. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem., Int. Ed. 2013, 52, 7545–7548.

4

Jung, D. S.; Hwang, T. H.; Lee, J. H.; Koo, H. Y.; Shakoor, R. A.; Kahraman, R.; Jo, Y. N.; Park, M. S.; Choi, J. W. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium–sulfur battery. Nano Lett. 2014, 14, 4418–4425.

5

Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem., Int. Ed. 2013, 52, 6930–6935.

6

Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

7

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

8

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

9

Yao, H. B.; Zheng, G. Y.; Hsu, P. C.; Kong, D. S.; Cha, J. J.; Li, W. Y.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z. et al. Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.

10

Zhang, Z.; Jing, H. K.; Liu, S.; Li, G. R.; Gao, X. P. Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 6827–6834.

11

Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.

12

Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

13

Chung, S. H.; Manthiram, A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries. Chem. Commun. 2014, 50, 4184–4187.

14

Yan, J. H.; Li, B. Y.; Liu, X. B. Nano-porous sulfurpolyaniline electrodes for lithium-sulfurbatteries. Nano Energy 2015, 18, 245–252.

15

Yan, J. H.; Liu, X. B.; Yao, M.; Wang, X. F.; Wafle, T. K.; Li, B. Y. Long-life, high-efficiency lithium-sulfur battery from a nanoassembled cathode. Chem. Mater. 2015, 27, 5080–5087.

16

Yan, J. H.; Liu, X. B.; Qi, H.; Li, W. Y.; Zhou, Y.; Yao, M.; Li, B. Y. High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading. Chem. Mater. 2015, 27, 6394–6401.

17

Huang, Y.; Zheng, M. B.; Lin, Z. X.; Zhao, B.; Zhang, S. T.; Yang, J. Z.; Zhu, C. L.; Zhang, H.; Sun, D. P.; Shi, Y. Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 10910–10918.

18

Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphenepure- sulfur sandwich structure for ultrafast, long-life lithiumsulfur batteries. Adv. Mater. 2014, 26, 625–631.

19

Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Mesoporouscarbon interlayers with tailored pore volume as polysulfide reservoir for high-energy lithium–sulfur batteries. J. Phys. Chem. C 2015, 119, 4580–4587.

20

Yan, J. H.; Liu, X. B.; Wang, X. F.; Li, B. Y. Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes. J. Mater. Chem. A 2015, 3, 10127–10133.

21

Singhal, R.; Chung, S. H.; Manthiram, A.; Kalra, V. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 4530–4538.

22

Song, J. X.; Yu, Z. X.; Xu, T.; Chen, S. R.; Sohn, H. S.; Regula, M.; Wang, D. H. Flexible freestanding sandwichstructured sulfur cathode with superior performance for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 8623–8627.

23

Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819.

24

Lee, C. L.; Kim, I. D. A hierarchical carbon nanotubeloaded glass-filter composite paper interlayer with outstanding electrolyte uptake properties for high-performance lithium–sulphur batteries. Nanoscale 2015, 7, 10362–10367.

25

Gu, X. X.; Lai, C.; Liu, F.; Yang, W. L.; Hou, Y. L.; Zhang, S. Q. A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. J. Mater. Chem. A 2015, 3, 9502–9509.

26

Wang, B.; Wen, Y. F.; Ye, D. L.; Yu, H.; Sun, B.; Wang, G. X.; Hulicova-Jurcakova, D.; Wang, L. Z. Dual protection of sulfur by carbon nanospheres and graphene sheets for lithiumsulfur batteries. Chem. —Eur. J. 2014, 20, 5224–5230.

27

Chung, S. H.; Manthiram, A. Bifunctionalseparator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 5299–5306.

28

Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

29

Xu, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 2013, 25, 3249–3253.

30

Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.

31

Bae, S.; Kim, H.; Lee, Y. B.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

32

Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solutionprocessed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

33

Mi, X.; Huang, G. B.; Xie, W. S.; Wang, W.; Liu, Y.; Gao, J. P. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon 2012, 50, 4856–4864.

34

Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.

35

Fang, X.; Weng, W.; Ren, J.; Peng, H. S. A cable-shaped lithium sulfur battery. Adv. Mater. 2016, 28, 491–496.

36

Gu, X. X.; Wang, Y. Z.; Lai, C.; Qiu, J. X.; Li, S.; Hou, Y. O.; Martens, W.; Mahmood, N.; Zhang, S. Q. Microporous bamboo biochar for lithium-sulfur batteries. Nano Res. 2015, 8, 129–139.

37

Wang, W. G.; Wang, X.; Tian, L. Y.; Wang, Y. L.; Ye, S. H. In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries. J. Mater. Chem. A 2014, 2, 4316–4323.

Nano Research
Pages 3735-3746
Cite this article:
Liu M, Yang Z, Sun H, et al. A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Research, 2016, 9(12): 3735-3746. https://doi.org/10.1007/s12274-016-1244-1

739

Views

138

Crossref

N/A

Web of Science

143

Scopus

7

CSCD

Altmetrics

Received: 23 June 2016
Revised: 29 July 2016
Accepted: 02 August 2016
Published: 13 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return